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Abstract

While Operating Systems have been virtualized for
a long time for security purposes, Firmwares have
been mostly ignored. Mirage is a prototype that aims
to sandbox untrusted firmware for security purposes.
This requires running firmware in an unprivileged man-
ner, without restricting its functionality.

This report aims to explore and explain the basic
steps taken to virtualize firmware without any code
modifications. It outlines important elements such as
emulation of privileged registers and instructions. But
also unique trapping mechanisms and non-firmware ex-
ecutions. Additionally, the report introduces the con-
cept of security into the Mirage prototype via the use
of special registers.

1 Introduction

What do we trust in computers? Where does trust be-
gin? What should we not trust? All of these questions
apply to modern day computing. Security takes a more
important place than ever before.

One of the elements that we trust in all cases is
firmware. Firmware takes care of configuring the hard-
ware for it to be available for other software. Firmware
runs in Machine mode, which is a privileged operating
mode in RISC-V architecture, providing the highest
level of control over the processor. It allows access
to all system resources and is responsible for manag-
ing lower privilege modes (user and supervisor mode),
handling interrupts, and configuring hardware settings.
This makes firmware ubiquitous to all machines.

Firmware is usually written by the manufacturer
of the board, making it a black box. Trusting the
firmware implies trusting the manufacturer. Manu-
facturers use open-source firmware such as OpenSBI,
a standard open-source for the RISC-V architecture,
and modify them with proprietary components to
suit their needs. The real issue lies in manufacturers
not releasing the source code for the firmware they
use, leaving potential security concerns unaddressed.
OpenSBI serves more as a library for building custom
firmware tailored to specific hardware, rather than a
universal, ready-to-use firmware solution, due to the
unique proprietary elements of each board.

Virtualization is a technique that has been used
with Operating Systems (OS) and other software to
protect from their potentially malicious intents. Sand-
boxing is a type of virtualization. If it can be done
for an OS, then it can probably be done with firmware.

That is the idea behind Mirage.
Instead of replacing the whole firmware with some-
thing custom, Mirage aims to virtualize any existing
firmware. This can be done by replacing the firmware’s
place in the structure by Mirage and running the
firmware with lower privileges. By virtualizing and
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Figure 1: Classic 3 levels privileges structure

emulating registers and instructions of the original
software, Mirage can also control its execution. This
makes sure that the firmware does not affect the
execution aside of its intended purpose.

This project focuses on establishing the basics of
firmware virtualization and security. The first objec-
tive was to be able to make a general purpose firmware,
such as OpenSBI, boot up a system while being emu-
lated. The idea of this is to expand the emulation ca-
pabilities later on. The second objective of the project
was to make a operating system without emulation
possible on top of Mirage and alongside the virtual
firmware. The third and last objective was to make
sure some security assurance was available to Mirage.
All done to start to provide a safe environment to soft-
ware without the need to trust a firmware.

1.1 Contributions

These are the contributions of the project.

e Finalized M-mode emulation with M-mode CSRs
and operations.

e Extended M-mode emulation with support for
traps.

e Allowed for S-mode execution.

e Added security for Mirage with PMPs.

1.2 Overview

This report is structured as follows. Firstly, we will
explore some necessary concepts and elements for un-
derstanding the report and the overall project. Sec-
ondly, we will focus on what is needed to emulate a
Machine mode software, a ”firmware”, and what con-
tributions these programs have. Thirdly, we will see
what it takes to run a Supervisor mode ”payload”
that depends on the previously mentioned M-mode
”firmware”. Fourthly, we will look at what it takes

to configure Physical Memory Protection (PMP) reg-
isters (and their security capabilities) in this particular
context. We will finish the report with a round-up of
the main characteristics of the project and a discussion
of the work. This report also includes a quick deep dive
into the implementations details, this is meant for the
people working on the project further down the line.

2 Context

2.1 Theoretical background

A virtual machine (VM) is a software emulation of a
physical computer. It runs an operating system and
applications just like a physical computer, but it oper-
ates in a virtual environment.
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Figure 2: Differences in 2-level and virtual privileges
structures

The Popek and Goldberg theorem, formulated in
1974 by Gerald J. Popek and Robert P. Goldberg,
provides a set of conditions that a computer architec-
ture must satisfy to support efficient and secure vir-
tualization. A “virtualizable” system would be a sys-
tem which can run equivalently whether it is running
directly in hardware or in a virtual machine. For a
system to be considered “virtualizable”, all sensitive
instructions must be privileged, ensuring that any at-
tempt to execute them in user mode will trap to the
VMM, allowing the VMM to manage them appropri-
ately.

In our situation, the virtualized software would be
the Firmware running in a lower-privilege mode.

Architectures have different privilege levels of ex-
ecution. These allow to configure different sections
of the execution, but also to abstract away unneces-
sary elements. Most importantly, they serve a security
purpose, software in lower privilege levels can be un-
trusted. Layering allows those pieces of software to not
harm the rest of the system.

In a classic system, three (sometimes more) privilege
levels or modes exist. The lowest privilege level is User
mode, or U-mode, which can only configure its own
execution and not affect other programs.

The next would be Supervisor mode, which can con-
figure elements such as page tables to be used by the



rest of the software. It also can configure how U-mode
software runs. This is usually the mode in which an
Operating System runs.

The last and most privileged is Machine mode, or M-
mode. This mode has everything allowed to it. And al-
lows configuring the hardware directly. Firmware usu-
ally runs at this level, since it has to configure the
machine to run correctly.

Firmware is a specialized piece of software, usually
running with the highest privileges. Firmware is usu-
ally loaded at boot, and stored in a specific part of
memory included with the board. Firmware acts as
the intermediary between the device’s hardware and
its higher-level software, such as the operating system
or applications.

2.2 Practical background

Some practical background is also in order. This
project focused on some particular combination of
architecture, firmware, and platform to keep its scope
limited.

The architecture of choice this time has been the
RISC-V [1] architecture. As its name implies, this
architecture belongs to the “Reduced Instruction Set
Computer” (RISC) family of “Instruction Set Archi-
tecture” (ISA). The fact that it is a RISC, helps when
considering the emulation, because it means that there
are fewer instructions to consider and emulate. This
reduces the complexity and difficulty of the implemen-
tation.

Another nice perk of the RISC-V architecture is that
it is open-standard, which makes obtaining information
about it much, much easier, and allows the project to
move forward faster.

The last, but certainly not least, aspect of this
architecture that is crucial to the project, is that
it allows for multiple privilege modes of execution.
Mainly it has the capacity of running software in
Machine, Supervisor, and User mode (as explained
before), and has an interesting set of security features
such as PMPs (explained in section 5)

The platform of choice is (a bit ironically to my taste)
the RISC-V Qemu emulator [3]. We have chosen this
option for three main-reasons. Firstly, it allows hav-
ing access to the platform extremely easy as it makes
part of the project installation. This makes testing and
running the early stages of Mirage very practical.

Secondly, the configuration of the platform can be
changed with ease to test different elements of the
firmware (whose execution depends on the platform’s
features).

Thirdly, the emulator is open-source, allowing to
explore its source-code with ease in case of problems
or abnormal situations.

The choice of firmware is the easiest to modify. For
this project, we have opted for the OpenSBI firmware.

As its name indicates, it is an open-source firmware for
RISC-V . The open-source characteristic of OpenSBI
helps in the testing and debugging of the project. It
allows knowing which steps the program will take dur-
ing its emulation, making it easier to debug and under-
stand during the project. It also becomes a judge of
progress for the project, as the further we go into the
boot process, the more features are available.

3 M-mode virtualization

3.1 Firmware Emulation

As we have previously stated, the objective of this
project is to virtualize the firmware. To achieve this,
we need to emulate the behaviour of the firmware.
To emulate a behaviour is to copy it with all of its
characteristics.

In the project, the basic emulation loop works as
follows. For starters, Mirage jumps into the firmware
code to execute it. This will start making the opera-
tions that the firmware needs to run to configure the
system. Except that the firmware will be running in
U-mode. As such, privileges to handle the hardware
are not given to the firmware execution.

This, causes traps when the firmware needs to exe-
cute a privileged instruction (we will see some of these
in the next section). This trap is then relayed to the
trap handler of Mirage. This makes the execution re-
turn to Mirage, and most importantly under our con-
trol. At this point, we can emulate the instruction and
jump back to the firmware to continue.

You can see in Figure 3 how the new privileges struc-
ture works. Mirage is the only software running in M-
mode. Making it have exclusive access to the needed
privileges.
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Figure 3: Mirage’s privileges structure

One of the key factors of emulation is that only the
privileged instructions and operations are emulated.
To achieve this in Mirage, we use a “Virtual Context”.



This “Virtual Context”, contains all the hardware in-
formation (and some metadata to help execution) that
the firmware should have access to during normal op-
eration. And most importantly, that should otherwise
be in hardware.

For instance, there are 32 basic RISC-V registers (x0
to x31) in the virtual context, which are the ones that
the firmware operates on. These values must be in
hardware while the firmware executes, since they can
be accessed without any privileges. In section 3.2 we
will see an abundance of example of elements belonging
to the virtual context.

To achieve this, jumping and returning from the
firmware is not only a simple jump. But also serve
as points for context switch logic (in which we will
dive deeper later on). During this context switch, the
values that are needed in hardware during firmware
execution can be copied from the virtual context,
and then copied back from hardware into the virtual
context when returning to mirage.
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Figure 4: Quick view of firmware emulation

Figure 4 shows a little summary of how the basic
firmware emulation works. We first initialize Mirage
to configure everything and get the execution of the
firmware ready. Then, we jump into the firmware to
execute it. Then an instruction will trap because the
firmware does not have the necessary privileges. At
that point, we emulate the instruction modifying the
previously mentioned virtual context. And we finally
go back into the firmware to continue execution.

3.2 M-mode CSRs

A Control and Status Register (CSR) is a register that
allows to configure and control a certain part of the
hardware. Some can also serve to inform of the status
of the hardware or the execution. CSRs are divided by
privilege mode. Some CSRs are exclusive to M-mode,
others can be used by S-mode.

We will now focus on the CSRs that belong to M-
mode in RISC-V . We will start by doing a quick round-
up of the most common characteristics for CSRs.

Firstly, a CSR can belong to a specific extension.
This means that if the extension is not available in

the platform, the CSRs that belong to it are not avail-
able either. For example, there is the Debug extension,
which makes a bunch of debugging CSRs available. An-
other example is the Hypervisor extension, which en-
able fields on some CSRs, requires operations to do
additional things, but also unlocks some CSRs.
Secondly, a CSR can be Read-only, Write Anything
Read Legal (WARL) or Write Anything Read Any-
thing (WARA). A Read-only CSR cannot be written
with any instruction, these are usually registers that
contain information about the manufacturer of the
board, such as the Machine Vendor Id (mvendorid)
CSR. If a value is written, the register is not modi-
fied. A Write Anything Read Anything CSR is what
we would consider a “normal” register. In these, the
last value written is the value that will be read. The
most complex behaviour comes from the Write Any-
thing Read Legal CSRs. In these registers, the values
written get filtered to accommodate only “legal” val-
ues. What is considered legal depends on each register.
Some require having a value of 0 in some fields or bits,
and some can only have a certain range of values.
Thirdly, CSRs change depending on the bit-length
of registers (32 or 64 bits). We will not dive into
this topic, but know that some CSRs are split into
two different registers when we are in a 32-bit platform.

There are many CSRs in RISC-V serving vastly dif-
ferent purposes. We will quickly see some of the most
important and interesting ones. Others will be ex-
plained as we move on in the implementation details.

If you were wondering from 3 paragraphs above,
“How can we know which extensions are available?”,
then the “Machine ISA and extensions” (misa) CSR
is your answer. This CSR shows which extensions are
available in the platform and can be modified. Never-
theless, in Qemu it is Read-Only.

Another example can be the Machine Status (msta-
tus). This CSR serves to obtain and modify the sta-
tus of the execution. For instance, it can indicate the
previous mode of execution via its Machine Previous
Privilege (MPP).

One last example is Machine Scratch (mscratch)
which can be used to save scratch values during
execution. The crucial feature of this register is that
it is protected by privileges, making it a permanent
scratch for the M-mode software (in this project,
Mirage).

We can operate on CSRs with some special instruc-
tions[4]. The important aspect of the instructions that
modify CSRs is that they are all privileged (depending
on the CSR). This means that they trap when executed
without the correct privileges, allowing us to emulate
them.

CSRs are operated on with basic Read and Write
operations. There also exist instructions to swap
values between a CSR and a regular register. Some
examples are the “csrrw” (read-write) or “csrrs”



(read-set) instructions.

For the purposes of emulation (remember that this is
our ultimate objective), Mirage’s “Virtual Context” of
the firmware contains all the CSRs of the architecture.

As such, when a CSR specific instruction traps from
the firmware, it has to be first be decoded. This is to
know what instruction we need to emulate, but also
which virtual CSRs need to be modified.

Once we obtain the instruction, we emulate it ac-
cordingly and modify the virtual CSRs with their new
values. Always keeping into account that the CSR in
question may be RO or WARL.

Another important element to keep in mind during
emulation is unwanted behaviour. Some CSR values
may be in direct contradiction with what Mirage
is capable of. For instance, the Machine Interrupt
Delegate (mideleg) CSR can delegate interrupts, but
Mirage does not have the capabilities (for now) to
handle interrupts of any kind. As such, this CSR needs
to be limited to a “no delegation” policy, which would
be equivalent to a Read-Only zero register. Another
CSR to control related to interrupts is the Machine
Interrupt Enable (mie), which allows enabling certain
interrupts.  Again, since Mirage does not support
interrupts, this register must be maintained at 0.

3.3 Traps

As we have seen until now, traps are the way to come
back to Mirage from the firmware execution. As such,
supporting traps is a crucial step of the project that
must be accomplished.

Traps are the combination of exceptions and inter-
rupts, that allow to change the control flow of the
program in exceptional situations. In this project, we
will only support exceptions, which are needed by the
firmware during normal execution. As such, interrupts
are not available. This implies that when “traps” are
mentioned, it refers to exceptions. Nevertheless, the
following explanations can also be applied to interrupts
further down the line.

Traps are an essential part of a firmware’s work.
Traps are the main way to change privilege modes dur-
ing the execution, as such to move from and to the
firmware, they are used constantly. For example, the
family of exceptions Exception Call (ecall), are used to
jump into other modes at will when it is necessary.

Traps in RISC-V work in a specific way. To indicate
where the hardware should trap to, i.e. where the
trap handler is located, the CSR Machine Trap Vector
(mtvec) must be written with the trap handler’s
address. The execution will jump to this address when
trapping. When trapping, some M-mode CSRs get
modified automatically. These are: Machine Status
(mstatus), Machine Cause (mcause), Machine Excep-
tion Pointer (mepc), Machine Trap Value (mtval).
The mepc CSR contains the address of the trapping
instruction. The mcause CSR contains the code of

the cause of the trap, you can find the list of trap
codes in the privilege specification [2]. The mtval
CSR contains extra information about the instruction
that trapped. For example, when the trap is a load
fault, mtval will contain the address of the memory
section which tried to be loaded. The mstatus CSR
will not change on its entirety, but only the Machine
Previous Privilege (MPP) field. This field will contain
the previous privilege mode (U, S or M) in which
the execution was at the time of the trap. This is
useful because the trap may cause the privilege level
to change, by going into a higher-privilege mode. In
our situation, it changes from U to M-mode.

Mirage handles all incoming traps from the firmware.
Nevertheless, it must also handle traps coming from its
own code. This means that we must be able to distin-
guish traps coming from the firmware and Mirage. The
important difference between Mirage and the firmware
is that the firmware executes in U-mode. As such, we
can identify its traps by evaluating the MPP field of the
“mstatus” CSR in hardware at the moment of the trap.
If the MPP value corresponds to the M-mode value,
then we know that the trap belongs to Mirage. IF the
MPP value corresponds to U-mode, then it comes from
the firmware.

Aside from distinguishing traps by origin, during
the project we did not have to handle traps coming
from Mirage, so we will focus on firmware traps. As
such, how do we handle firmware traps?

It is first important to know why traps can occur
during the virtualized firmware execution. Exceptions
can occur for a multitude of reasons.

Firstly, firmware can use exceptions to do some hard-
ware exploration and detection. In RISC-V | hard-
ware detection is done in the following manner. First
a CSR is accessed with an instruction, then, an Ille-
gal Instruction is raised by the hardware to make the
firmware know that the component is not available. If
it is available, then no exception is raised.

Secondly, exceptions occur naturally during execu-
tion to handle errors, unexpected behaviours, or de-
mands from other level of privileges. For the sake of ex-
ample, OpenSBI has two trap handlers. The first one,
called Expected Traps Handler, handles “expected” ex-
ceptions, the ones it expects to occur due to accessing
unknown hardware. The second is the general trap
handler that is used for all other kinds of exceptions.

Thirdly, privileged instructions that the firmware
should not be able to execute and that Mirage needs to
emulate also trap. These instructions need to be then
emulated by Mirage. One thing to note is that these
instructions also raise an Illegal Instruction exception.

Now that we know why traps occur, we can handle
them accordingly. The traps caused by privileged in-
structions can occur in the case where a normal CSR
is used or when hardware is explored. Since Mirage
is running on the same hardware as the firmware, we



have access to the hardware’s capabilities when han-
dling the trap. As such, we can detect when the in-
struction needs to be emulated (normal execution) or
when the trap needs to be forwarded to the firmware’s
trap handler.

With this information, we can now separate traps.
All exceptions that are not of the kind “Illegal In-
struction” should be forwarded to the firmware’s trap
handler. All exceptions raised due to hardware explo-
ration need to be forwarded as well. To forward an ex-
ception, we have to emulate a jump to the firmware’s
trap handler. To emulate the jump, we have to mod-
ify the mstatus MPP to correspond to M-mode, since
our objective is virtualization. This implies making the
firmware believe nothing has changed. But also to set
the virtual context to all the values that were present
in hardware at the moment of the trap (mcause, mepc
...). Once that is done, Mirage has to jump to the
mtvec value of the virtual context (which corresponds
to the trap handler of the firmware).

The rest of exceptions are “normal” “Illegal Instruc-
tion” exceptions, which simply are the instructions
we have to emulate. This implies emulating the
instruction with the virtual context and then jumping
back to the firmware. The instruction to jump is
the one following the one that raised the exception.
Or else the same instruction would be executed and
raise another exception, and an infinite loop would be
created.
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Figure 5: Simplified view of trap handling and emula-
tion

At this point, the trap has been handled. Either, Mi-
rage has emulated the behaviour of the instruction and
jumped back to the firmware, in this situation Mirage’s
job is done. Or, Mirage has emulated the jump to the
trap handler of the firmware, and it has executed. In
this situation, there is one last step to finishing the
trap handling, the Machine Return (MRET) instruc-
tion. The MRET instruction is used to return from a
trap handler in M-mode back to the normal execution.
This instruction applies some changes to some CSRs.
As such, this instruction has to be emulated by Mi-
rage. The most important part is that the instructions

makes the execution jump to the mepc of the original
trap, in our situation this corresponds to the mepc in
the virtual context.
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Figure 6: Complete trap emulation

4 S-mode support and execution

Our objective to virtualize the firmware is at this point
partially complete. A firmware is nevertheless not very
useful if its only task is to configure hardware without
allowing to run anything else. That is why it is equally
important to support a payload to be run after the
firmware initial configuration.

One of the possible extensions in the RISC-V archi-
tecture is S-mode. This extension enables the platform
to be configured to run software in S-mode, such as Op-
erating Systems. This is exactly what we need to run a
payload after OpenSBI finishes its initial configuration.

4.1 S-mode CSRs

One of the most important parts in supporting any
extension, is for the CSRs related to that extension
to be accessible. Supporting CSRs in our situation is
being able to emulate them without raising any ex-
ception to the firmware (as we have seen before). S-
mode CSRs are related to multiple elements. For ex-
ample, the Supervisor Address Translation and Pro-
tection (satp) CSR allows configuring how the address
translation works. If there is any. For our project, ad-
dress translation is non-existent. This is done to limit
the scope of the implementation. This implies keeping
the CSR to a Read-Only 0 register. This is similar to
the interrupt-related CSRs.

Some other CSRs, which were already available,
only make sense if some other program is running
on top of the firmware. For instance, the Machine
Exception Delegate (medeleg) CSR allows delegating
exceptions to a lower-privilege mode. In our case, it
would be the S-mode payload. This means that the
exceptions selected with medeleg do not get raised at
the Mirage level but directly in the payload.



Supervisor CSRs have a particularity compared to
other CSRs. They can be accessed without any restric-
tion by software in M-mode, but also S-mode. This
makes it that the firmware can kickstart the S-mode
configuration, and it can be continued by the payload
later down the line. Aside from this particularity, they
behave in the same manner as M-mode CSRs.

Let’s recall that our objective is to virtualize the
firmware, as such the S-mode payload should not be
emulated in any way. We may wonder now : “If the S-
mode payload can modify the CSRs, but it’s not emu-
lated, how will the firmware obtain the information?”.

4.2 Guest execution

And that would be a very good question. Since we do
not emulate the S-mode payload, we do not trap on
each modification of the Supervisor CSRs, but those
are accessible by the firmware. As such, the cor-
rect information must be in the virtual context of the
firmware when running the firmware.

That is why Mirage needs to ensure a smooth
transition between the S-mode execution and the
firmware execution.

To execute our S-mode payload, we have to jump
to its code. The firmware takes care of this jump at
the end of its initial configuration. To change the
flow of an execution and at the same time change the
privilege level in RISC-V the MRET instruction must
be used. By indicating the next privilege level in the
MPP field of mstatus, the hardware knows what mode
it should be executing in. We will call this MRET
jump to the S-mode payload the “Exit Point” of the
firmware.

Once we know that the next mode will be S-mode,
Mirage can take care of setting everything up. For this,
Mirage does a “Context Switch”. When the execution
goes from the firmware to the payload, some registers
must be in hardware. Those should be the ones that
either the payload can access without extra privileges,
or ones that impact the execution. In the first category,
we can find all the common registers and all the S-mode
CSRs. In the second category, we can find CSRs such
as medeleg or mstatus.

The “Context Switch” then needs to transfer some
information from the firmware’s “Virtual Context” to
the hardware. Remember, that the Virtual Context
contains all the information that the firmware sees and
modifies, as such it also includes the S-mode CSRs.

The same logic, but inverted, must be used when
entering the firmware from the S-mode payload. At
this point, all the information we put initially in the
hardware may have been updated. As such, it must
be loaded from hardware and used to update the
Virtual Context. This is to make sure the firmware
always sees the up-to-date information, and can be
virtualized correctly.

If there is an “Exit Point” then there must be an
“Entry Point”. The Entry Point is when the execution
comes back from the S-mode payload to the firmware.
This occurs in the event of a trap. As explained be-
fore, some traps will be delegated to S-mode directly by
the medeleg and mideleg CSRs. Nevertheless, all other
traps will be forwarded to M-mode. In our situation,
they will be received by Mirage.

Before, we have discussed trap handling in the case
of a firmware trap. Now, the situation changes because
these traps are coming from the payload. These do
not have to be handed in a special way, but need to
be forwarded to the firmware to be managed by its
trap handler. It is the same mechanism as before,
we will have to emulate the jump to the firmware’s
trap handler. The only important part is now to
distinguish these traps from all the others.

To differentiate these, we can use the Entry and Exit
points. These points must be used to go from the pay-
load to the firmware and the other way around. This
allows us to adapt our response to traps depending on
the last point traversed by the execution. To know
this, added to the Virtual Context information regard-
ing in which mode we are running : the firmware or
the payload.

If we pass through an Exit point, the execution now
is transferred to the payload. This implies that all
incoming traps can be forwarded to the firmware.

If we pass through an Entry point, the firmware is
executing next. As such, the traps received must be
handled as explained in section 3.3.

Firmware
Ravicad (Trap Handler)

Jump MRET

Trap Jump

Context Switch

Figure 7: Simplified view of payload execution and trap
handling

5 Security with PMPs

As we have mentioned in the introduction, our main
objective for the project was to virtualize the firmware.
After everything we have seen, the bare-bones for
firmware virtualization are in place. Nevertheless, we
have also mentioned the security aspect of the virtual-
ization.

Our last objective in this project is to provide some
basic security assurance to Mirage. The idea is to pro-
tect Mirage from the firmware. We will see how we suc-



cessfully protected Mirage with the use of the Physical
Memory Protection (PMPs) CSRs.

5.1 Deep dive into PMPs

Physical Memory Protection CSRs allow protecting re-
gions of memory by using pattern matching on memory
addresses.

Figure 8 shows the overall structure of these CSRs.
Each PMP entry has a configuration and an address.
Addresses are stored in their own register, and configu-
rations are bundled together into a single register. This
figure represents the structure of a 64-bit platform. 64-
bit platforms in RISC-V only have the even numbered
registers (0, 2, 4, 6, 8, 10, 12 and 14), the odd ones
are unavailable. But they contain 8 PMP configura-
tions per register. In 32-bit platforms, all registers are
available, but each contains 4 PMP configurations.
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Figure 8: pmpconfig structure for a 64-bit machine
with 16 PMPs, and 8 PMP entries example

One PMP entry is then the association of a configu-
ration and an address.

The configuration allows specifying three elements.
Firstly, whether the entry is locked or not. This is
not available in Mirage but deserves a mention. Lock-
ing an entry makes it impossible to be modified. This
can be useful to prevent any modification by untrusted
parties. Secondly, the permissions related to the en-
try can be changed. The three basic permissions are
read, write and execute. Any combination of these can
be achieved in the configuration. Thirdly, the address
matching mode can be changed. There are 3 match-
ing modes to define the boundaries of a memory region
using the entry’s address. These modes are : Top of
Range (TOR), Naturally Aligned 4-byte region (NA4)
and Naturally Aligned Power of Two.

These modes change how the address impacts the
matching of addresses during execution. The first thing
to know is that addresses are matched in order of en-
tries. Entry 0 has priority over entry 1, and so on.
Once an entry matches using the address, the per-
missions are decided. The remaining addresses are

ignored. If no address matches, then an error is re-
turned. The way the address of an entry is matched
by the hardware changes radically with the mode. The
simplest one is TOR. In this mode, the matching region
is between the address of the previous PMP entry and
the current entry. This basically defines an interval of
addresses which match with the entry. Each mode re-
quires addresses to be encoded in a special way. For
example, TOR requires the address to be shifter by 2
to the right in the PMP entry.

PMPs work differently in M-mode than they do in
U or S mode. Most importantly, in M-mode, no PMPs
restrictions apply to the running program. This allows
M-mode to configure memory without running into any
restrictions.

Note that in our case, the M-mode program is Mi-
rage. The virtualized firmware should believe that it
is running in M-mode. As such, we will explore later a
solution to making the virtual firmware have the bare
minimum of restrictions.

5.2 Mirage’s PMPs

So, what do we need to protect?

Mirage’s PMPs should firstly focus on protecting Mi-
rage from the firmware and the OS. To do this, we first
need to know where Mirage resides in memory. Once
we have this information (which may vary depending
on the configuration), we can set up the PMPs. In
our situation, Mirage resides in between the addresses
0x80000000 and 0x80100000. As such, we need to pro-
tect this memory region from every action, read, writes
and execution.

Figure 9 shows an example of a PMP structure
that Mirage uses. This example contains a total of
16 PMPs. In this example, the first 2 PMPs are
used to protect Mirage’s memory region with a TOR
configuration.

The other thing that Mirage’s PMPs need to take
care of is giving to the firmware the illusion that it has
all PMPs for itself. For that, we require two elements
to be present. As mentioned before, the root PMP has
address and configuration set at 0. This needs to be
emulated for the firmware. As such, the PMP before
the ones allocated for the firmware needs to contain
the value 0 all the time. Figure 9 shows an example of
where that 0 value would be placed in the whole PMP
structure.

There is another element we need to virtualize with
Mirage’s PMPs. That is, the firmware needs to be
allowed to access the rest of memory without any re-
strictions. For this, we can set the last PMP to allow
all actions on all possible addresses. This ALL allowed
PMP is shown in Figure 9 as well.

To allow Mirage’s PMPs to cohabitate in hardware
with the firmware’s, we introduce a PMP offset into
the Virtual Context. This offset allows the firmware to
read and write PMPs without leaking or overwriting
Mirage’s information.
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Figure 9: Mirage’s PMP configuration structure

5.3 Firmware’s PMPs

The offset is crucial to the virtualization of the
firmware’s PMPs. As we explained before, multiple
PMP configurations are present in the same register.
Because Mirage’s configuration can be present in
one of these registers, the offset allows filtering out
Mirage’s values for the firmware.

Now that PMPs are available to the firmware,
they need to be emulated correctly. Aside from the
offset, we have to consider another value. That value
would be the amount of PMPs that are allocated to
the firmware. This value is given to the firmware by
Mirage during its initial configuration.

There are two possible operations on PMPs, read
and write. In the Virtual Context in which these oper-
ations operate, PMP values are as if in hardware. This
means that the first PMP of the firmware corresponds
to the first PMP entry in the Virtual Context. To read
a PMP we have to filter out the values that do not
belong to the firmware, those exceeding the allocated
number. The same happens when writing. The writ-
ten value is filtered to not allow changes outside the
allocated entries.

Aside from the number of entries, there is one other

element to consider. Since we operate on an 64-bit
environment, all reads and writes to an odd PMP
configuration CSR should not work.

To achieve full PMP emulation, the CSRs need to
be placed in hardware during the execution of the S-
mode payload. This makes it important that during
the Context Switch explained in section 4.2, PMPs are
taken into account.

If the U-mode firmware emulation is executing, the
firmware’s PMPs do should not be in hardware, or else
they would impede the firmware itself from accessing
memory. Since the firmware is in U-mode, PMPs in
hardware affect it, but since we are virtualizing it,
only the minimum should affect it (Mirage’s protec-
tion). The last PMP should be configured to allow all
memory to the firmware.

If the S-mode payload is executing, the PMPs con-
figured by the firmware should be active. Since this
is the configuration, the payload should be restrained
to. In this case, the last PMP should not permit the
payload to access all memory unrestricted. To do this,
we can simply modify the configuration to have no per-
missions.

It is important to note that the firmware’s PMPs
have no offset in the Virtual Context. As such, they
have to be moved before entering the hardware to not
overwrite Mirage’s protection.

Figure 10 shows an idea of what should change.
The arrows represent the context switch.
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Figure 10: Firmware’s PMP configuration structure

One last element to tie the whole PMP implemen-
tation together is the emulation of the ”vfence.vma”
instruction. This instruction is used to flush all caches



for memory location. These caches contain informa-
tion about the PMPs (among others). As such, when
a PMP is modified, the instruction needs to be called.

Since OpenSBI is at this point aware of its PMPs it
uses this instruction after its initial PMP configuration.

6 Conclusion

In the first section, we have seen how we managed to
make emulation work. We saw how basic emulation
works in the context of firmware virtualization. But
also how M-mode CSRs can be adapted and controlled
for the sake of virtualization. And finally, how traps
are an all-important tool for the firmware and as such
for its emulation. We saw how to differentiate traps
coming from multiple places and how to emulate their
effects.

In the second section, we explored how to adapt the
execution and virtualization to make a non-virtualized
software work. Even when its execution directly de-
pends on the outcome of the firmware execution and
emulation. For this, we explored how S-mode CSRs are
different from M-mode CSRs in some aspects and what
we need to take into account when emulating them.
More importantly, we saw how to switch from one ex-
ecution context to another thanks to entry and exit
points.

In the third and last section, we looked at the
security capabilities of PMPs, and how they allow
protecting Mirage from the firmware. During this, we
looked at how PMPs work in more details. But also
how Mirage can protect itself during the execution of
the firmware without sacrificing any of the capabilities
of the firmware.

With all of this said, we can safely conclude that the
objectives of the project have been attained. Mirage
is now capable of executing and controlling a complete
firmware such as OpenSBI. But Mirage can also offer
some protection to itself via PMPs.

Discussion : Limitations and Ex-

pansion

6.1

Nevertheless, there are some limitations and expan-
sions to be made to the current state of Mirage. We
will mention some of them here.

Firstly, from a security point of view, PMPs are only
used to protect Mirage itself. But the firmware can
also affect other programs such as an Operating Sys-
tem without any issues. As such, it would be ideal for
Mirage to offer some protection to other parts of the
system as well.

Secondly, as mentioned before, interrupts are not
support in Mirage. Interrupts are used by the firmware
to wait for certain actions, as such, they should be sup-
ported.

Thirdly, page tables are related to the S-mode CSR
satp, which during current emulation is kept at 0. This
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makes page tables unavailable. But page tables are
used in almost all executions. Making them an useful
addition.

Fourthly, some major features are still lacking. Au-
tomatic hardware detection to know which elements
are available on the board Mirage is executing would
be useful. As to have a single version of Mirage capable
of configuring different boards without any issue. This
relates also to supporting 32-bit platforms, not only
64-bit, and common extensions such as the Debug and
Hypervisor RISC-V extensions.

Fifth, and the most complex, would be to support
other architectures aside from RISC-V such as x86.
This would of course come with its own set of chal-
lenges, unique to each architecture.
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