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1 Introduction

This first section will introduce Serval and the scope of the project. The second section will
provide an overview of the initial verification environment, along with an explanation of how
to adapt it to verify Rust code. The third section will describe the proposed language and
methods to write lemmas and program properties directly in the Rust code.

1.1 Serval

Serval [1] is a verification framework, written in Racket, that provides a working environment
to evaluate the behavior of programs. In particular, its declared scope is to be used with
security monitors and system code in general. It leverages symbolic execution to verify or
disprove program properties.

It comes with a set of functionalities and ideas. It has built-in support for RISC-V, eBPF
(x86-32), and LLVM instruction sets and allows the development of their interpreters. It
brings, besides the interpretation of machine-level programs, also some specific optimizations
to the symbolic execution of that kind of paradigm.

While Serval does not explicitly target Rust, it could be used with it, because Serval verifies
machine code and not high-level source code.

There exist also other verification tools specifically made for Rust, for example, Prusti [2].
The key difference between it and Serval is that the former directly operates on Rust code,
thus it can exploit high-level assumptions and peculiarities of the language. On the other
side, it lacks customization and flexibility regarding low-level constructs.

1.2 Symbolic Execution

Symbolic execution extends the standard execution model, referred also as "concrete"
afterward, adding the concept of symbolic values. Concrete variables, during the execution,
assume a specific value, that maybe can be updated and altered, and that can also interfere
with the execution flow. This is the well-known concept of program execution on a real
computer. On the other side, during symbolic evaluation, variables are not a specific value,
but rather all the possible ones that are achievable during the execution. Step by step, values
are added, along with a condition on input and other values, that represents when a symbolic
value could assume a concrete value, based on the different paths that the execution flow
may follow. In the end, a symbolic variable is a collection of conditions on input values and
related values. The original definition of symbolic execution can be found in [3]. It allows the
evaluation at once of all possible behaviors of a program. On the other hand, it comes with
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1.3 Motivating example

increased memory and computation costs. If not made explicit by the context, we will refer
to symbolic – and not to concrete – execution, interpretation, or evaluation. All of these
terms have a similar meaning in our frame of reference.

Symbolic execution, in our context, can be interpreted as a generalization of unit testing.
In fact, it helps to write more concise tests with a generally higher coverage compared to
standard concrete unit testing.

When we use symbolic execution with assertions, the result is either a counterexample, that
is a set of input values for which the assertion is proved wrong, or a successful result.

1.3 Motivating example

Let’s assume that we have a global variable, containers, and a function, init_container.
containers is an array of 32 structs, where each has an integer id field and other data.
init_container receives as input an integer container_id and initializes a container in
the array if one of them is empty (has 0 as id) and no other container with the same id exists.
It returns 0, if the container is created, or 1 otherwise. We want to prove two arbitrarily
chosen properties, namely: (1) if the result is 0, then there exists at least one element in
the containers array such that id equals container_id, and (2), if a container with the
same id already exists, then the result of init_container is 1 (it fails).

Along with writing a piece of code that we think satisfies the properties (see A.3.1), we have
to define in Racket the two lemmas that represent the desired properties. We also need
to integrate them into the testing framework such that they will be verified. With simple
properties like (1) and (2), we accomplish this by writing some dozens of lines of Racket
code. With more lemmas, the size of the Racket files obviously increases, and with that their
intricacy.

An hypothetical definition for property (1) may be:

(define (lemma-1-prove-creation)
(define-symbolic new_container_id i64)

(if (bveq (@init_container new_container_id) (bv 0 i8))
(let ()

(define contains #f)
(for ([c 32])

(define current_id (mblock-iload (llvm:symbol->block 'containers) (list
c 'id))),→

(set! contains (or (bveq new_container_id current_id) contains))
)
(assert contains)

)
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1.3 Motivating example

(assert #t)
)

)

The complete specification of both (1) and (2) is available in the appendix (A.3.2).

Then, we have to compile the program code to two different file formats, for code and memory
structure, and at last, we have to run the Racket tests. The details of this procedure are
explained in 2.4.2.

This comes, ideally, with two problems. The first is that it does not work out of the box
with Rust. During the last few years, Rust affirmed itself to be a solid, memory-safe, and
performant alternative to languages like C and C++ in low-level contexts. Having different
verification frameworks available is then essential. The second is that writing code in Racket
to express properties may be tedious and unsustainable in the long run, in particular when it
comes to accessing memory and working with complex environments. It becomes evident in
the specifications provided by Serval authors as examples [4]. Given the number of involved
components, it is difficult to understand the structure of the lemmas before spending some
time jumping between the program and them. It creates an undesirable obstacle that may
hurt the adoption of this framework, or of formal verification in general, as a method to
assess the quality of a program. Also, reviewing the verification files by a third party, not
directly involved in the development, may become burdensome and not straightforward.

This project approaches these issues proposing a language that is similar to Rust and is
mapped directly to Racket statements. The above (1) property would be expressed, directly
in a Rust file, as:

"lemma 1";
let new_container_id: u32;

if init_container(new_container_id) == 0u8 {
let result = false;
for c in 0..32 {

result = result || containers[*bv(c, 64l)].id==new_container_id;
}
*assert(result);

}

Again, the complete specification in Rust of both (1) and (2) is available in the appendix
(A.3.3).
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1.4 Scope of the project

1.4 Scope of the project

Serval proposes different kinds of properties verifiable using the framework. While this project
focuses on lemmas with a simple structure (a set of assumptions, some operations, and a
set of assertions, arbitrarily combined), it is possible to extend it to support a broader set
of Serval-defined constructs and ideas. For example, Serval proposes to verify the absence
of undefined/unwanted behavior exploiting compiler capabilities and inserting a (bug-on)
Racket call in the branches that should not be reached. If during symbolic execution (bug-on)
is hit, then the verification fails. 4.1 will propose an idea to implement this differently, on
top of the current work.

The aim of this project is not to add functionalities to Serval or to the verification environment,
but rather to improve its usability by integrating it into Rust. As already introduced in the
previous part (1.3) and detailed in the rest of the document, the Serval approach requires
great effort, from the developer’s side, to have a piece of code verified. Merging properties
and code in the same project structure allows more concise and tight mapping between the
software and its properties, making the verification of a complex hypervisor easier and more
sustainable in the long term. Keeping the proof consistent with respect to code modifications
is also straightforward.

It follows three phases. In the first moment, we try to understand how Serval can be used.
After that point, we assess and experiment with the possibility to use it with Rust. In the
end, thanks to all the gathered knowledge, we propose and implement a new language that
is mapped to Racked code to express verifiable properties.
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2 How to use Serval?

In the second section, there will be a description of Serval and the verification workflow to
be used to verify simple programs. In particular, this workflow will be ported and integrated
into Rust, as explained in the third section. The aim of this section is not to provide a
step-by-step guide about how to prove code with Serval, but rather to give direction about it,
as an addendum to the provided examples and code snippets.

2.1 Components

Serval [1] is a Racket library, and it is based on the following tools and programs.

Racket [5] is an extensible programming language, with a syntax similar to Lisp. It provides
support for metaprogramming and parsing; Serval exploits these functionalities to build
interpreters.

Rosette [6] extends Racket with constructs for symbolic analysis and verification of programs.
Without being exhaustive, this language provides symbolic variables and lifts Racket
constructs (e.g. if-else, expressions...) to support them. The code in lemmas is
written and verified mainly using Rosette.

Z3 [7] is a theorem prover by Microsoft Research, on the top of which Rosette provides
symbolic functionality. It is widely used in the industry and by other verification
frameworks. For instance, also Prusti uses it.

The schema below represents how the components are interconnected.

Program Code
C/C++
eBPF

Rust (this project)

LLVM-IR
code

RISC-V
code

x86-32
code

Specification/Properties

LLVM-IR
interpreter

RISC-V
interpreter

x86-32
interpreter

Serval
Symbolic optimizations
Support for system code

Rosette
Symbolic evaluation

Z3
Constraint solving

Racket code
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2.2 Assumptions and Limitations

2.2 Assumptions and Limitations

Due to the type of symbolic evaluation used, Serval requires the programs to be finite. A
common definition of this property is that all possible execution traces must be finite in the
number of steps. As an example, loops must always be bounded. Unbounded loops without
specific constraints could make the set of possible values associated with variables increase
arbitrarily, together with the feasible code paths that the execution may follow.

In addition to all the assumptions listed in the Serval paper (section 3.5 of [1]), the entire
parser and translator to Racket proposed in this paper is not verified, thus it has to be
assumed correct. Further, although Serval proposes a way to reduce the trusted code base
for RISC-V programs, removing from it the assembler and linker, it is not possible to follow
the same approach with LLVM-IR programs. Then, it is needed to trust the entire toolchain,
the entire Serval framework and underlying tools, and this project.

Since Rosette does not support floating point bit vectors, the verified programs and properties
cannot contain any non-integer math.

2.3 Overview of the verification workflow

For the scope of the project, we use LLVM-IR as the language that is verified. We preferred this
option, compared to using, for example, x86, for different reasons. In particular, Serval only
supports a small part of the instruction set, making it difficult to add all the needed instructions
for a full program to work. The focus of Serval regarding x86 support, indeed, is to be able
to prove eBPF compiled rules. Furthermore, LLVM-IR abstracts the code representation
from the underlying system, and it works seamlessly with any hardware architecture. On the
other side, it lacks support, in case of usage, of specific machine instructions, which is not
uncommon during the development of hypervisors and security monitors.

The source code has to be compiled twice. The first time, LLVM-IR code is generated, to be
mapped to Rosette constructs. The second compilation is needed to obtain memory structure
information. After the compilation and conversion, the resulting Racket files can be imported
by the developer where the lemmas to be proved are defined. In the end, Serval provides a
Makefile that has to be used to verify them, in a "unit test" fashion.

The next paragraph will describe the procedure, from the developer’s side, to have a piece of
code verified. Then, the subsequent paragraph will highlight some technical details about
what happens. In the end, we list various issues encountered during the installation and usage
of Serval, along with some proposed solutions for them.
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2.4 Serval usage

2.4 Serval usage

The steps described in this part are all inferred by analyzing some Serval tests. In particular,
it comes with a suite that checks its behavior with respect to the LLVM-IR language. Reusing
that, it is possible to have a piece of software compiled to LLVM-IR first mapped to Racket
code, then verified with respect to defined lemmas. The figure below represents the required
steps to have a working proof. Steps 1 and 3 require manual effort, while 2 and 4 can be
automated.

Rust project See 2.4.1
1

rustc to RISC-V
rustc to
LLVM-IR

2

objdump
–dwarf=info

nm

DWARF output map output .ll output

Serval LLVM
Parser

proj.globals.rkt proj.map.rkt proj.ll.rkt

See 2.4.2

Include all
3

Write the lemma

lemma.rkt

See 2.4.3

Verify
4

Results

See 2.4.4

For a C/C++ project, the steps are very similar, the main difference is that clang is used as
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2.4 Serval usage

compiler instead of rustc.

2.4.1 Prepare the Rust project

The Rust project to be verified must be without the standard library. It requires some further
adjustments: a panic handler has to be defined. An empty project is provided, with all of the
needed settings already put in place.

It is also required that the RISC-V Rust toolchain is installed. The rationale behind that
is described in 2.4.2. For a guide on how to install it for cross compilation in an x86-64
environment, please see [8].

2.4.2 Compile it and obtain required Racket files

Two compilations are needed. In the appendix, we provide a script that does that automatically.

Verifiable code For that, the project is compiled into LLVM-IR intermediate language. Then,
using a Serval-provided script, it is translated to Racket code. This kind of translation
is straightforward for Serval. It considers only the code section of the file, and the
LLVM-IR instructions [9] are directly mapped to Racket functions.
They are implemented by Serval, for example, to update bit vectors and to do calcula-
tions. Anyway, it does not implement the whole instruction set, but only a part of it.
Nevertheless, they are sufficient to work with real Rust programs.
Instead, if we have to verify assembly programs instead, the approach is to parse directly
the objdump output, instruction per instruction.

Memory structure To allow Serval to infer memory structure (in particular, global variables),
the code has to be compiled to an actual executable/library, obtaining a .so file. Then,
nm and objdump commands are applied to it to obtain respectively a symbols table
.map and memory structure and debug information file .globals. At verification time,
.map and .globals are read and interpreted, to generate, recursively, the memory
definitions. Ideally, it is represented as nested dictionaries of bit vectors.
Given that existing tests use the RISC-V compiler, to reduce as much as possible
potential inconsistencies and issues, this step has to be done with the RISC-V Rust
toolchain. The file structure should be very similar if compiled to an x86 target, thus
avoiding the need to have a different toolchain installed, but this was not tested
during the semester. Potentially, there could be differences in the Dwarf file structure,
regarding how variables are mapped to memory.
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2.4 Serval usage

2.4.3 Write a lemma

Examples of simple lemmas are provided in the appendix. Lemmas could be written using
Rosette constructs, please refer to the Rosette guide [6] to have a detailed overview of them.
Serval, in this scope, is used mainly for two reasons. The first is that it provides a testing
framework and it creates a working symbolic environment. Secondly, it maps Rust code to
Racket.

The most important details, useful to write a working proof, are:

Rust-defined functions can be referred using a @ as a prefix. They are defined in the code
generated file, that has to be included. For example, if the compute(a: i32, b:
i32) function is declared in the Rust source file, it can be called as (@compute a b)
in the Racket file, where a and b are properly defined variables.

Global variables defined in Rust can be referred using a relatively verbose syntax. Let’s
assume that there is a global array arr of structs, each with a field x. Then, to obtain
a reference to that value of the third element, we have, firstly, to get a reference
to the array ((llvm:symbol->block ’containers)). Then, we can access to it
using (mblock-iload (llvm:symbol->block ’containers) (list (bv 3 i64)
’x)). The list operators contain the sequence of indexes/labels to access the specific
item.

Variables It is possible to declare both symbolic and concrete variables. Although lemmas
are just Racket code, usually in this context high importance is given to bitvectors.
Serval already defines some shortcuts for common types (e.g. i8, i32...). For example,
to declare the variable a as a 32-bit integer of value 8, it is sufficient to write (define
a (bv 8 i32)). On the other hand, to declare a symbolic 64-bit variable x, one could
write (define-symbolic x i64). Note that, even if the variables are initialized in
Rust code, during symbolic evaluation they are all symbolic values, with no assumption
about them.

Assumptions and assertions The two statements (assume cond) and (assert cond)
are used to declare preconditions and postconditions. cond is a boolean expression on
symbolic and concrete values.

Integration in the testing framework A lemma should be added to the list of the executed
tests, that is a declaration at the end of the file.

2.4.4 Verify it

As already explained in the overview, Serval provides a Makefile that automatically executes
every test in the working directory. Thus, it is sufficient to run the make command to prove
all existing lemmas.
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2.5 Issues encountered

2.5 Issues encountered

During this part of the project, we encountered some compatibility issues between compiled
Rust and Serval.

At first, to have predictable function and variable names, it is needed to avoid Rust "mangling",
which adds a random suffix to every definition at compile time to avoid name clashing. This
could be obtained by annotating with #![no_mangle] every function that has to be referenced
from the specification.

Even if disabling std library reduces the number of boilerplate code in the compiled output,
there are still some function calls that are not exported properly to LLVM-IR code by LLVM.
It requires that they have to be defined in a Racket file and imported. Although this is not
fully predictable, since we only noticed one call (panic_bounds_check) that is regularly
repeated, we defined a stub Racket function with the same name that does nothing.

There exist some Rust constructs that generate code with unsupported LLVM-IR calls. For
example, using a range loop inside the body of a function leads to the insertion of resume
instructions. This specific one is related to exception handling and has a complex behavior
that cannot be simplified to an empty body, but it should be implemented along with the
other exception-related instructions. Given that, range loops should be avoided in program
code. On the other side, there are also simple LLVM-IR statements (like llvm.expect) that
are used as optimization annotations and their effect is neglectable during execution; we
declared them as empty functions.

We also noticed a couple of issues in the DWARF parser regarding the recursive traversal of
the file, that required some modifications in the Serval library.
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3 Integration in Rust

In the third section, details about the integration and the capabilities of the proposed language
will be described. This also serves as documentation for the language. Primarily, it has as its
goal to replace parts 2.4.2 and 2.4.3 of the verification workflow.

The code is available on GitHub, https://github.com/epfl-dcsl/serval-rust.

3.1 Overview and high-level description

The main aim of the language is to be able to express a wide variety of properties without
sacrificing readability and writeability. For that scope, a subset of the Rust language has been
mapped to Racket constructs. The two main statements that can be used, as procedural
macros in the Rust language, are #[verify] and #[define].

#[verify] has as a main aim the definition of a lemma. A piece of code written in this
macro is mapped to a verifiable lemma in Racket. It is automatically embedded into
the testing framework, ready to be verified using the appropriate command.

#[define] is used to define a Racket function that is not directly embedded into the testing
framework. Its scope is to be reused in different parts of the lemmas or in other defined
functions. This allows the developer to write code that is better structured and without
redundancies.

Both of the statements require a defined identifier to represent their name. ![verify] does
not require a defined identifier if it is used before a Rust function, as it takes its name, but it
is up to the developer to avoid duplicate definitions. In particular, two definitions with the
same name will collide during the actual verification.

3.2 Syntax

The main objective of the proposed syntax is to be as similar as possible to a Rust program.
Unluckily, there are some limitations, given by the structure of Rosette in particular, that
requires some tricks to be considered. Many of them will be listed in the next paragraphs.

3.2.1 Lemma and function declarations

As already stated in 3.1, there are two kinds of annotations that are defined to be used inside
the Rust program to provide verification functionality. Their syntax is almost the same. If we
want to define a verifiable lemma, then we should write in a Rust file inside the project, at
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3.2 Syntax

the same level as the functions defined in Rust.

#[verify({
"lemma_name";
// lemma to be verified

})]
fn test_function() -> i32 {

// function code
}

We can omit the identifier for verify lemmas. Their identifier will be the name of the Rust
function that they are annotating. Regard that, in the case of two different lemmas that
annotate the same function and do not have a name, they will collide and the resulting code
will fail to verify.

It is possible to declare arguments for define, calling the args just after the function name.

#[define({
"function_name";
args(x, y, z);
// function code...

})]

3.2.2 Variables

It is possible to define both concrete and symbolic variables. In general, concrete variables
have a value assigned from their instantiation, while symbolic ones are defined just by their
type (bitvector size, in particular). There is no difference in the way they are used and referred
to. Rosette provides support for symbolic variables in almost all contexts that are considered
in the scope of this work. For example, but not limited to, they can be used in expressions,
function calls, conditional constructs, and so on.

Serval maps all variables and memory regions to bitvectors. They can, therefore, represent
all variables of a Rust program, if defined of the correct size.

In any expression, numeric values must be suffixed with their size in bits. For example, when
we want to define an int of 4 bytes with value 3, we should write 3u32. Obviously, we can
also use the signed alternative, like 3i32. In Rosette, they are mapped to the same kind of
bitvector, but the operations that are applied should be different.

An example:

let x = 15u8; // Define a concrete unsigned 8-bit variable with value of 15

12



3.2 Syntax

let y : i64; // Define a symbolic signed 64-bit variable

It is not possible to specify both a size (using the type annotation to the variables) and an
initialization value. Variables with type annotation define symbolic variables, initialization
values define concrete variables.

Variables can also be reassigned. Since variable names are not bound to types, there is no
problem assigning a different kind of value to a variable.

let x = 15u8;
let y : i64;

y = x; // Now y has 15 as value

In case of need, the cast operator as can be used to resize (actually, to extend) a bitvector
to a bigger size.

let y : i32;

let z = y as i64;

3.2.3 Expressions

Almost all binary operators available in Rust are supported and can be used to write arbitrarily
complex expressions. As of now, since there is no elegant way to differentiate signed and
unsigned operators, by default all of them are unsigned.

To overcome this limitation, two pseudo-functions signed and unsigned are provided. The
expression inside of them is always treated as signed or unsigned, thus operations defined
inside of them are mapped to the correct Rosette expression. Moreover, they can be arbitrarily
nested to allow precise definitions of statements.

Unsigned binary operators, that behave the same in signed and unsigned contexts, are:

• Math operators: +, -, *
• Boolean operators: &&, ||
• Bitwise operators: ˆ, &, |
• Shift operator: «, the two operands must be bitvectors of the same size
• Equality: ==

Signed operators, that may produce a different result if used in signed or unsigned context,
are:

• Math operators: /, %
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3.2 Syntax

• Shift operator: », in a signed context, leading one is extended
• Comparison operators: <, <=, >, >=

let z = 3u8 - 5u8; // Result is 0xFE

// u is false, because z is considered as unsigned
let u = z < 0u8; // 0xFE > 0x00
// s is true, because the comparison is now inside of a signed context
let s = signed(z < 0u8); // 0xFE => -0x02 < 0x00

3.2.4 Function calls

In the current environment, there are two kinds of function calls.

Rust defined functions are the ones that are defined in the code as normal functions. In
general, they should contain the code that has to be verified. They should be written
as normal function calls, for example:
let result = function_call_test(a, b, 3u8);

Racket defined functions usually are already defined functions in the Racket/Rosette/Ser-
val environment. They could also be other blocks of code defined with the define
macro. Their calls should be prepended with an asterisk. For example, if we want to
print a variable for debugging purposes:

*print("Value of a is: ");
*println(a);

In general, this differentiation must be enforced and respected. As described previously,
"code" functions are called differently with respect to "racket" functions.

It is important to remember the simple syntax of Racket. Almost all constructs are "function-
like" statements, thus a wise usage of this described parser could be used also to form
expressions that were not considered in this report.

3.2.5 Memory access

The parser support memory access to global variables. They can be arbitrarily complex nested
arrays and structs. The syntax is the standard for a Rust program. For example, accessing
the field f of the 4th element of array arr should be written as:

let val = arr[3u64].f;

Indexes for array accesses could be arbitrarily complex expressions, but the resulting value
must be a 64-bit unsigned bitvector. Particular attention has to be used in the case of for
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3.2 Syntax

loop indexes, see 3.2.7 for details.

As of now, it is not possible to refer to global variables that are not arrays or structs.

3.2.6 Conditional execution

if and else statements can be written as usual Rust statements. Obviously, their condition
should be a boolean (symbolic or concrete) value.

3.2.7 for loops

Only ranged for loops can be written. Further, they always start from 0, that could also be
not written explicitly, and end with an explicit integer value/ No variable or expression could
be written as a range end, only numbers. A simple example is:

for i in 0..8 {....}

It is important to remember that variable i, inside of the scope of the loop, is not a bitvector
but an actual integer, as defined in the Racket language. Thus, it must be converted to a
bitvector in case of usage with Serval/Rosette constructs. Namely, if we want to access the
ith element of a vector vec, we should use the bv function to have it converted to a 64-bit
bitvector.

for i in 0..8 {
*println(vec[bv(i, 64)]);

}

3.2.8 Arbitrary Racket code

Since it is not possible to map any possible Racket construct to Rust, it is also allowed to
use directly raw Racket code, using the raw pseudo-function. For example, if we want to call
the println function directly, we write:

raw("(println \"test\")");

To be precise, println, as any other Racket function, can be called also using Rust syntax,
see 3.2.4. It is obviously possible to refer to defined Rust variables and other functions inside
of raw, and vice versa. Names are mapped as they are between Rust and Racket.
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3.3 Implementation

3.3 Implementation

The translation to Racket code happens in two steps. In the first, each macro statement is
parsed independently and its contents are put in a JSON file as a syntax tree. Then, all the
resulting files are collected and expanded into Racket files. The compilation of the actual
Rust code remains unchanged and output files are mapped by Serval as already explained in
2.4.2.

There are no semantic and type checking enforced. All of these are delayed to verification
time. Racket will try to execute the output file and, in case of errors, they will be reported.
Even if this is a simplification in the translator, it allows more freedom for the developer to
express even code that was not "planned" during the project. Further, it is complex to check,
for example, if a name exists in a relatively complex environment created by the intersection
between Racket, Rust, and various libraries.

3.3.1 First step: Rust code parsing

Parsing is done by Syn, a Rust library specifically targeted to parse Rust code in the context
of macros. The result is a syntax tree formed by nested structures and enumerations.

All the required logic is implemented in the module macroslib, which should be imported
into the code to be verified.

This result is then unwinded using recursive calls. Only the subset of the syntax of interest is
interpreted. In case of an unexpected token, an error is raised.

Errors are displayed using the Rust compiler library. It allows to highlight precisely what, and
where, is the problem, and some IDEs support them allowing even better spotting. This has
required some additional effort since this feature is supported only by the Nighly toolchain,
but that adds some constructs in the LLVM-IR output that are not supported by Serval. As
a workaround, one compilation pass is done with the Nightly toolchain, and the other with
the Stable.

3.3.2 Second step: Racket code generation

The logic of this second part is included in another module, which is a stand-alone Rust
executable program.

All the JSON files are collected. Then, based on the syntax tree, Racket code is recursively
generated. All the lemmas and functions are put in a single Racket file, that can be verified
using, for example, the make command in the output directory.
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3.4 Evaluation and limitations

3.4 Evaluation and limitations

We experimented with the proposed language with two objectives of correctness in mind.
The first, straightforward, is that generated Racket code should be valid and meaningful.
The second is that a valid Racket lemma should be writable in Rust and should have the
same interpretation and the same result. For testing purposes, we wrote three classes of
Rust functions, with increasing complexity: simple operations on variables, operations on
arrays, and operations on arrays of structs with functions that resemble the ones that may be
implemented in a security monitor. An extract of the former two is available in A.1 and A.2,
while an example of the latter is reported in A.3. Then, we wrote some lemmas in Racket
and their equivalent in Rust. Our tests show that their behavior is the same, specifically,
the same properties are proved true or wrong, with the same counterexamples. The direct
mapping between Rust and Racket names makes the comparison straightforward.

There are some sugared syntax constructs in Racket, for example, the single quote (’)
operator, that have still no Rust equivalent. However, this is just a short-hand alternative
for (quote ...) expression, that can be defined as a function call (quote(...)) in Rust.
Similarly, it is also not possible to declare and use lists/arrays with the Rust syntax yet, even
if this could be implemented, but only with a function call. An integer array [1, 2] may
be declared as list(1u32, 2u32). Though, this requires some knowledge of Racket and
Rosette.

The main limitation of this approach is that it is not possible to express top-level constructs
in a Racket file that are different from (define (name) (body...)). This means that
the developer cannot, for example, import additional source files, or export items outside of
the scope of the current file. Nevertheless, in the considered context these features are not
strictly necessary, and that may be solved by adding a new kind of macro or, if a file has to
be always included, it may be statically added to the generated Racket template. Further,
Racket supports, in name identifiers, more symbols compared to Rust, e.g. the hyphen -,
that cannot be expressed in the current implementation.
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4 Conclusions

The proposed language achieves the initial objective of having Serval work with Rust. In
particular, it is now possible to verify Rust programs using Serval and write lemmas directly
in the Rust code. It is also straightforward to add new constructs to the parser in case of
need. The two-step structure of the parser also decouples the Rust lemmas from the Racket
code, making it feasible to partially reuse them with different languages and provers.

The advantages are varied, but the most important is regarding developer experience. Pre-
viously, it was needed to write code in two different languages, having to orchestrate two
completely disjoint file structures to have even a simple piece of code verified. Now, it
is sufficient to write all the code in a single project and have it proven with a couple of
commands.

There are, however, some aspects that could be improved. Compared to a standard Rust
program, the proposed language adds some verbosity, especially regarding literal numbers
definition. Not to mention the fact that it lacks type checking, delaying the discovery of
potential errors to verification time.

Also, performance is an issue that has not been taken into account in the scope of the project.
For symbolic evaluation, the shape of a program is determinant to avoid state explosion or
proofs that do not terminate in a reasonable amount of time. Although Serval proposes some
optimizations to reduce this problem, it was easy, during the course of the project, to clash
with simple programs of which the evaluation runs indefinitely. Since programs in this context
have to be finite, however, the verification always terminates, but it may take too much time.

Using the latest versions of Rust nightly, we noticed that a new capability of the language,
opaque pointers that do not have a pointee type associated, has been introduced to replace
standard pointer definitions. Even if this feature can be disabled with a compiler flag in the
transition period, it is expected that it will become the new standard. Serval interpreter does
not support this new construct and, thus, it should be eventually updated.

4.1 Further ideas

There is a lot of room for further improvements before claiming to have a complete verification
environment in Rust.

As of now, it is possible to declare and verify simple properties using the proposed language.
Serval, however, lists different kinds of properties that can be verified for a program and that
could require instrumenting the code. For example, the existence of undefined/unwanted
behavior is one of the easiest to implement on top of the current work.
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4.1 Further ideas

A straightforward solution is to use a Rust boolean global variable undefined and a function
to update it, which is called in the circumstance of unwanted behavior. Then, using an
assertion, the value of undefined is checked to be false. All of these statements can be
desugared from more elegant constructs written in Rust lemmas or code, as macros. It is
also possible to insert (assume false) in specific positions of the program, but this may
require modifying Serval and the Racket files that it generates.

Another aspect to consider is that each lemma and function call is considered independently
from the others. An optimization could consist in reusing already verified lemmas, or executed
pieces of programs, in other contexts when needed. For example, when the same function
call is reached with the same (or weaker) assumptions on the input values, the result should
be the same, or, in general, should contain the specific expected result. An approach that
has been proposed to solve this kind of problem is Green [10].

19



References

[1] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and
Xi Wang. Scaling symbolic evaluation for automated verification of systems code with
serval. In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, page 225–242, New York, NY, USA, 2019. Association for Computing
Machinery.

[2] V. Astrauskas, A. Bílý, J. Fiala, Z. Grannan, C. Matheja, P. Müller, F. Poli, and A. J.
Summers. The prusti project: Formal verification for rust (invited). In NASA Formal
Methods (14th International Symposium), pages 88–108. Springer, 2022.

[3] James C. King. Symbolic execution and program testing. Communications of the ACM,
19(7), jul 1976.

[4] Examples of security monitors verified by serval, https://github.com/uw-unsat/
serval-sosp19/tree/master/monitors.

[5] Racket language, https://racket-lang.org/.

[6] The rosette guide, https://docs.racket-lang.org/rosette-guide/index.html.

[7] Z3 theorem prover, https://github.com/Z3Prover/z3.

[8] Daniel Mangun. Rust cross compilation, https://danielmangum.com/posts/
risc-v-bytes-rust-cross-compilation/, jan 2022.

[9] Llvm-ir reference, https://llvm.org/docs/LangRef.html.

[10] Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. Green: Reducing, reusing and
recycling constraints in program analysis. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12, New
York, NY, USA, 2012. Association for Computing Machinery.

20

https://github.com/uw-unsat/serval-sosp19/tree/master/monitors
https://github.com/uw-unsat/serval-sosp19/tree/master/monitors
https://racket-lang.org/
https://docs.racket-lang.org/rosette-guide/index.html
https://github.com/Z3Prover/z3
https://danielmangum.com/posts/risc-v-bytes-rust-cross-compilation/
https://danielmangum.com/posts/risc-v-bytes-rust-cross-compilation/
https://llvm.org/docs/LangRef.html


A Appendix

A.1 Properties expressed in Racket

To obtain the files needed by Serval, the following script may be useful. It should be run
from the Rust project top-level folder.

# Output path for the .rkt files
BASE_PATH=/home/filippo/serval/rust/gen

# Compile to LLVM-IR and map to Racket constructs
cargo rustc --release -- --emit=llvm-ir -C panic=abort
racket /home/filippo/serval/serval/bin/serval-llvm.rkt --

target/riscv64gc-unknown-linux-gnu/release/deps/rusty_risc.ll >
$BASE_PATH/sumrust.code.rkt

,→

,→

# Compile to RISC-V to obtain memory structure
cargo rustc --release -- -C panic=abort

echo "#lang reader serval/lang/nm" > $BASE_PATH/sumrust.map.rkt
riscv64-linux-gnu-nm --print-size --numeric-sort

"target/riscv64gc-unknown-linux-gnu/release/librusty_risc.so" >>
$BASE_PATH/sumrust.map.rkt

,→

,→

echo "#lang reader serval/lang/dwarf" > $BASE_PATH/sumrust.globals.rkt
riscv64-linux-gnu-objdump --dwarf=info

"target/riscv64gc-unknown-linux-gnu/release/librusty_risc.so" >>
$BASE_PATH/sumrust.globals.rkt

,→

,→

Given some simple Rust functions

#[no_mangle]
fn sum(x: u32, y: u32) -> u32{

let r: u32 = x + y;
return r;

}

#[no_mangle]
fn fake_equality(x: u32, y: u32) -> u8{

if x==y || (x==0&&y==1) { return 1; }
else { return 0; }

}
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A.1 Properties expressed in Racket

#[no_mangle]
static array_to_sum: [u32; 5] = [1,2,3,4,5];

#[no_mangle]
unsafe fn sum_array() -> u64{

let mut result: u64 = 0;
let mut i: usize = 0;

while i<5 {
result += array_to_sum[i] as u64;
i = i + 1;

}

return result;
}

we can define some properties over them

(define (call-sum)
(define-symbolic a i32)
(define-symbolic b i32)
(define r (@sum a b))
; We prove both that sum function does an addition and that is commutative
(assert (bveq r (bvadd b a)))

)

(define (call-equality)
(define-symbolic x i32)
(define-symbolic y i32)
(define result (@fake_equality x y ))
; This property fails to verify because fake_equality is not properly

defined,→

(cond
[(bveq x y) (assert (bveq result (bv 1 i8)))]
[else (assert (bveq result (bv 0 i8)))]

)
)

(define (call-array-sum)
; This function assign values 1, 2, 3, 4, 5 to the array
(@init_array)

(define expected_result (bv 0 i64))
(define b0 (llvm:symbol->block 'array_to_sum))
(for ([i 5])

(define curr (zero-extend (mblock-iload b0 (list (bv i i64))) i64))
(set! expected_result (bvadd expected_result curr))
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A.2 Properties expressed in Rust

)

(assert (bveq @sum_array expected-result))
)

At the end, they should be integrated and hooked into the testing framework

(define rust-tests
(test-suite+

"Tests for rust functions"
(parameterize ([llvm:current-machine (llvm:make-machine symbols

globals)]),→

(test-case+ "sum" (check-function0 call-sum))
(test-case+ "fake equality" (check-function0 call-equality))
(test-case+ "array sum" (check-function0 call-array-sum))

)
)

)

(module+ test
(time (run-tests rust-tests)))

A.2 Properties expressed in Rust

We can express exactly the same properties directly in Rust. There is no need to write code
in Racket or integrate them into the testing framework, all is done automatically behind the
scenes.

#[verify({
let a: i32;
let b: i32;
*assert(sum(a, b) == b+a));

})]
#[no_mangle]
fn sum(x: u32, y: u32) -> u32{

let r: u32 = x + y;
return r;

}

#[verify({
let x: i32; let y: i32;

let result = fake_equality(x, y);
if x == y { *assert(result==1u8); }
else { *assert(result==0u8); }
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A.3 Motivating Example

})]
#[no_mangle]
fn fake_equality(x: u32, y: u32) -> u8{

if x==y || (x==0&&y==1) { return 1; }
else { return 0; }

}

#[no_mangle]
static array_to_sum: [u32; 5] = [1,2,3,4,5];

#[verify({
init_array();

let expected_result = 0u64;
for i in 0..4 {

expected_result = expected_result + array_to_sum[*bv(i, 64l)];
}

*assert(sum_array() == (expected_result as u64));
})]
#[no_mangle]
unsafe fn sum_array() -> u64{

let mut result: u64 = 0;
let mut i: usize = 0;

while i<5 {
result += array_to_sum[i] as u64;
i = i + 1;

}

return result;
}

A.3 Motivating Example

A.3.1 C sample code

The code that we want to verify as example is

typedef struct {
int id;
// ... other fields

} container_t;

container_t containers[32];
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A.3 Motivating Example

int container_exists(int container_id){
for(size_t i = 0; i<32; i++){

if(containers[i].id == container_id) return 1;
}
return 0;

}

int init_container(int container_id){
if(!container_exists(container_id)){

for(size_t i = 0; i<32; i++){
if(containers[i].id == 0){

containers[i].id = container_id;
return 0;

}
}
return 2;

} else return 1;
}

A.3.2 Racket Lemmas

#lang rosette

(require (except-in rackunit fail) rackunit/text-ui rosette/lib/roseunit
(prefix-in llvm: serval/llvm) serval/lib/unittest serval/lib/core),→

(require "gen/code.map.rkt" "gen/code.globals.rkt" "gen/code.code.rkt")

(define (lemma-1-prove-creation)
(define-symbolic new_container_id i64)

(if (bveq (@init_container new_container_id) (bv 0 i8))
(let ()

(define contains #f)
(for ([c 32])

(define current_id (mblock-iload (llvm:symbol->block 'containers) (list
c 'id))),→

(set! contains (or (bveq new_container_id current_id) contains))
)
(assert contains)

)
(assert #t)

)
)

(define (lemma-2-prove-fail-on-existing)
(define-symbolic new_container_id i32)
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A.3 Motivating Example

(if (bveq (@container_exists new_container_id) (bv 1 i8))
(assert (bveq (@init_container new_container_id) (bv 1 i8)))
(assert #t)

)
)

(define (check-function0 f )
(define r (verify (f)))
(assert (unsat? r) r)

)
(define rust-tests

(test-suite+
"Tests"
(parameterize ([llvm:current-machine (llvm:make-machine symbols globals)])
(test-case+ "lemma 1" (check-function0 lemma-1-prove-creation))
(test-case+ "lemma 2" (check-function0 lemma-2-prove-fail-on-existing))
)))

(module+ test
(time (run-tests rust-tests)))

A.3.3 Rust Lemmas

The same properties can be expressed as Rust macros, leaving out actual Rust program code,
as:

#[verify({
"lemma 1";
let new_container_id: u32;

if init_container(new_container_id) == 0u8 {
let result = false;
for c in 0..32 {

result = result || containers[*bv(c, 64l)].id==new_container_id;
}
*assert(result);

}
})]
#[verify({

"lemma 2";
let new_container_id: u32;

if container_exists(new_container_id) == 1u8 {
*assert(init_container(new_container_id)==1u8);

}
})]
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