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Abstract
This report outlines the integration of Key-
stone, an open-source Trusted Execution
Environment (TEE) framework, with Mi-
ralis, a firmware virtualizer. This integra-
tion addresses a critical challenge in mod-
ern systems: the tension between running
security-sensitive code and firmware at the
highest privilege level.

Keystone traditionally requires full trust
in the entire firmware codebase, which in-
troduces potential security vulnerabilities.
To mitigate this risk, we propose port-
ing Keystone to function as a Miralis se-
curity policy. This approach removes the
need to trust firmware, thereby reducing
the trusted computing base (TCB). We
present a working implementation in Rust
that supports key Keystone features such
as enclave creation, execution, and mem-

ory protection. Our work demonstrates the
feasibility of running Keystone alongside
virtualized firmware, offering a more secure
foundation for RISC-V-based trusted exe-
cution environments.

1 Introduction

The increasing adoption of RISC-V, an
open and extensible instruction set archi-
tecture (ISA), has driven significant inter-
est in building secure and customizable sys-
tems. This report studies how Keystone,
an open-source framework for creating cus-
tomizable TEEs on RISC-V platforms, can
be integrated into Miralis, a system de-
signed to minimize the TCB.

In RISC-V systems, multiple components
require the highest privilege level to per-
form their functions. Firmware, for in-
stance, operates at this level to exe-
cute various privileged instructions criti-
cal for system functionality. At the same
time, security-related software like Key-
stone depends on these privileges to pro-
vide security-enforcing features. However,
this dual requirement creates a conflict:
while security software leverages high priv-
ileges for enforcing security, the firmware’s
extensive scope increases the TCB, which
conflicts with the goal of minimizing the
attack surface. To address this limitation,
Miralis is designed to separate the non-
security components of the firmware from
the TCB by running them with lower priv-
ileges. This separation reduces the TCB
size while preserving the full feature set of
the firmware.

The report begins with an overview of
the foundational components, highlighting
their individual roles in the system. We
then delve into the technical details of port-
ing Keystone to Miralis, focusing on how
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the security monitor and Physical Mem-
ory Protection (PMP) are adapted to work
with Miralis.

2 Background

This section starts by introducing key
RISC-V concepts to build a solid founda-
tion. It then covers OpenSBI, the core
firmware, followed by Keystone, a secu-
rity monitor built on OpenSBI, and Mi-
ralis, which enhances the system by min-
imizing the trusted computing base. We
conclude the section with an overview of
the threat model.

2.1 RISC-V concepts

RISC-V is an open-source Instruction Set
Architecture (ISA) that follows the reduced
instruction set computing principles, offer-
ing a modular platform for processor design
without proprietary restrictions.

It implements a hierarchical privilege
model with three main modes of execution
1:

• Machine Mode (M-mode) is the
most privileged level with full hard-
ware control and is mandatory in all
implementations, it is the level at
which the firmware runs

• Supervisor Mode (S-mode) pro-
vides support for operating systems
through features like virtual memory
management

• User Mode (U-mode) is the least
privileged level where application
code runs

Transitions between privilege modes occur
through a trapping mechanism. For in-
stance, the ecall instruction allows a lower-
privileged mode to request services from
a higher-privileged mode, while the cor-

responding mret, sret, and uret instruc-
tions handle returns to lower privilege lev-
els. Additionally, hardware events such as
timer interrupts or memory access viola-
tions can trigger transitions to higher priv-
ilege modes where the appropriate handler
code is executed.

Code run in M-mode is usually inherently
trusted and therefore part of the TCB. It
has low-level access to the machine im-
plementation and can be used to man-
age Physical Memory Protection (PMP), a
mechanism that allows defining memory re-
gions with specific access permissions. The
PMP process will be detailed later in sub-
section 3.2.

2.2 OpenSBI

OpenSBI [2] (Open Source Supervisor Bi-
nary Interface) is a firmware that bridges
the hardware and S-mode software (e.g.,
operating systems), as shown in Figure 1.
It implements the RISC-V SBI specifica-
tion [4] and is designed for extensibility, al-
lowing adaptation to specific hardware con-
figurations. OpenSBI can emulate unsup-
ported instructions, handle hardware-level
initialization, and act as an intermediary to
perform privileged operations in M-mode.

Figure 1: Typical RISC-V system running
with an OS and OpenSBI

2
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2.3 Keystone

Figure 2: Keystone system with host pro-
cesses, untrusted OS, security monitor, and
multiple enclaves (each with a runtime and
an Eapp)

Keystone [5] is an open-source project de-
signed to create customizable TEEs called
enclaves on RISC-V systems. It leverages
physical memory protection (PMP) regis-
ters to secure segments of physical memory.
The system involves several components, as
depicted in Figure 2:

• Host: A U-mode application that
creates and manages enclaves.

• Keystone Driver: A kernel module
ensuring communication between the
host and the security monitor. It also
coordinates with the OS to allocate
memory for the enclave

• Security Monitor (SM): An M-
mode OpenSBI extension that pro-
vides functions for enclave operations
such as creation, execution, and at-
testation.

• Enclave: A protected region of the
physical memory, typically compris-
ing a Runtime (RT) and an Enclave
Application (Eapp).

• Runtime (RT): An S-mode exe-
cutable within the enclave. It com-
municates with the SM, mediates
host communication via shared mem-
ory, and provides essential S-mode
functionalities for the Eapp (e.g., vir-
tual memory). It acts as a minimal
secure OS for the Eapp.

• Enclave application (Eapp): A
U-mode executable within the en-
clave that communicates directly
with the RT.

For example, to create an enclave with a
custom Eapp and Runtime (RT), the user
must first instantiate a host application to
manage the enclave. The host is respon-
sible for specifying parameters such as the
size of the enclave memory region, which it
communicates to the Keystone driver. The
driver then allocates the required memory,
loads the RT and Eapp into it, and noti-
fies the Security Monitor (SM). The SM
secures the enclave memory using RISC-
V Physical Memory Protection (PMP) and
can now run the enclave by switching con-
texts.

Although multiple components are in-
volved in this process, developers typically
only need to implement the Host and the
Eapp. The Keystone driver, SM, and RTs
are reusable, simplifying the development
workflow.

Another advantage of Keystone is its abil-
ity to be easily extended with plugins to
provide additional security guarantees. For
example, the Keystone developers have
proposed several plugins designed to en-
hance security. One such plugin is a secure
On-Chip memory extension, which safe-
guards against physical attackers with ac-
cess to the DRAM by ensuring that the
code or data never leaves the chip package.
Another proposal is a Cache partitioning
extension, which mitigates the risk of cache
side-channel attacks.

2.4 Miralis

While implementing Keystone as an
OpenSBI extension is feasible, it results in
a dual role for the firmware. It must ad-
dress both security-critical functions (e.g.,
enabling TEEs) and vendor-specific hard-

3
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ware management. This dual responsibility
creates a fundamental conflict: while mini-
mizing M-mode software is desirable to re-
duce the Trusted Computing Base (TCB),
the inclusion of extensive firmware features
inevitably expands the TCB.

Miralis [1] resolves this issue by lim-
iting M-mode execution to security-
critical functions and running all
other firmware code in U-mode.
Firmware running in U-mode, commonly
known as ”virtualized firmware”, relies on
Miralis to handle privileged instructions
through a trap mechanism. When the
firmware executes a privileged instruction,
Miralis intercepts the trap and, by de-
fault, executes the instruction on behalf of
the firmware, effectively granting it near-
complete access to the machine. However,
Miralis allows for the installation of cus-
tom security policies that impose restric-
tions on what the firmware is permitted to
do. One example of a policy would be one
that protects the operating system’s mem-
ory from firmware access.

Figure 3: Comparison between run-
ning Keystone on the existing OpenSBI
firmware vs running Keystone alongside
Miralis

This approach offers several significant ad-
vantages:

• Compatibility: Miralis does not
require modifications to existing
firmware, enabling integration with
current components without altering
their implementation.

• Flexibility: Instead of enforcing a sin-
gle universal security policy, Miralis

supports the creation and deploy-
ment of diverse, custom policies tai-
lored to specific needs. This adapt-
ability facilitates the development of
solutions for a wide range of chal-
lenges.

2.5 Threat Model

The Keystone Security Monitor trusts the
PMP specification as well as the PMP and
RISC-V hardware implementation to be
bug-free. It also trusts that the firmware
will not interfere with its operations.

If Miralis is used, the Keystone SM will no
longer have to trust the firmware as it will
be virtualized. However, Keystone will now
have to trust Miralis instead. We argue
that trusting Miralis is safer than trusting
the firmware for the following reasons:

• The size of Miralis is smaller than
most firmware, which reduces the
TCB.

• The code of Miralis is open-source,
while the code of the firmware might
not be.

• Miralis is designed with modern secu-
rity practices in mind (for instance, it
was written in Rust, a relatively safe
programming language).

Finally, other threat models such as side-
channel and physical attacks are out of
scope but can be mitigated with additional
hardening.

3 Porting Keystone to

Miralis

We will now explain how Keystone can
be ported to Miralis. As specified be-
fore, Keystone is a large project consisting
of multiple components, such as the Run-
time, Security Monitor, and Eapp. Among
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these, only the Security Monitor operates
in M-mode, making it the sole component
that needs to be adapted for Miralis. All
other components can remain unchanged
and reused without modification.

3.1 Trap Handling

The Keystone Security Monitor currently
functions as an OpenSBI extension. To un-
derstand the implications of this setup, we
first review how the SBI extension system
operates.

SBI defines a set of standardized functions
that the S-mode can invoke. These func-
tions are organized into extensions, where
each extension groups related functional-
ity. Extensions enable modularity, allow-
ing different features to be added or omit-
ted based on the hardware or software re-
quirements. These extensions can either
be standardized by the RISC-V Founda-
tion, addressing common needs like timer
management, or be vendor-specific like the
Keystone extension. In either case, SBI
functions are invoked using the ‘ecall‘ in-
struction, with parameters passed through
registers:

• Register a7: Contains the extension
ID: a unique identifier used to distin-
guish between all the available exten-
sions (ex: 0x08424b45 is the exten-
sion ID of Keystone).

• Register a6: Contains the ID of the
specific function to call from the set
of functions offered by the extension
(ex: 2001 is the ID of the Keystone
function used to create an enclave).

• Registers (a0, ... a5): Hold the
function’s arguments.

When the Security Monitor registers its ex-
tension ID with SBI, any ecall matching
this ID is routed to the Keystone security
monitor, as shown in Figures 4 and 5.

Figure 4: Standard SBI call

Figure 5: Keystone SBI call

However, porting Keystone to Miralis re-
quires changing this protocol. Since
OpenSBI operates in U-mode under Mi-
ralis, Keystone should no longer be imple-
mented as an OpenSBI extension, as the
goal is to exclude OpenSBI from the TCB.
Instead, Keystone must operate in M-mode
as a Miralis security policy. In this
setup, Miralis intercepts ecall instructions
and determines their handling:

• If an ecall does not match Keystone’s
extension ID, the regular Miralis trap
handling flow is followed (Figure 6).

• For Keystone-specific ecalls, Miralis
invokes Keystone’s security policy, al-
lowing it to execute enclave-related
operations securely without interact-
ing with OpenSBI (Figure 7).

This approach ensures that Keystone’s en-
clave management operates securely in M-
mode without relying on U-mode firmware.

5
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Figure 6: Miralis trap handling if the trap
is not an ecall or if the extension ID does
not correspond to Keystone

Figure 7: Miralis executing the Keystone
policy when the trap is an ecall whose ex-
tension ID corresponds to Keystone

3.2 PMP

Keystone leverages the RISC-V physical
memory protection (PMP) mechanism to
secure and protect enclaves. The PMP de-
fines a finite number of PMP regions that
can be individually configured to enforce
access permissions (Read, Write, and Ex-
ecute) to a range of addresses in memory.
Each PMP region is configurable using con-
fig (pmpcfg) and address (pmpaddr) regis-
ters, whose functionality is detailed in the
RISC-V specification [3].

However, to understand how the Keystone
SM utilizes PMP, we need to know several
properties of RISC-V PMP:

1. Prioritized by Index: PMP en-
tries are statically prioritized by their
index, with a check stopping at the
highest priority matching. Indices

run from 0..N (where N is platform
defined), with 0 having the high-
est priority, and N having the low-
est. Thus, the access permissions to
a physical address should be of the
lowest-index PMP entry among the
matched ones.

2. Default Deny: If no PMP entry
matches with an address, the mem-
ory access will be rejected by default.

3. Dynamically Configurable: M-
mode can write to PMP CSRs dur-
ing runtime to define PMP entries dy-
namically.

At the very beginning of the boot process,
physical memory is not accessible by U- or
S-modes because of property 2 (Listing 1).

During its initialization, Miralis configures
PMP so that the first PMP entry denies all
access to Miralis’ memory, while the last
PMP entry grants full access to the rest of
the memory, allowing the OS to access the
rest of the memory and start booting. Be-
cause of property 1, the net result will be
as shown in Listing 2.

When the Keystone policy creates an en-
clave, it will assign a PMP entry to pro-
tect the enclave’s memory from other U-
/S-mode software (Listing 3).

When the Keystone policy executes the en-
clave, it flips the permission bits of the en-
clave’s PMP entry and the last PMP en-
try as shown in Listing 4. This will allow
the enclave to execute in U-/S- mode while
protecting the rest of the physical memory.
In addition, Keystone allows the allocation
of an additional contiguous memory region
in the OS memory space to enable commu-
nication between the enclave and the OS.
The contiguous memory region is called the
untrusted shared buffer.

If the enclave stops executing and cedes
control to either the OS or OpenSBI (for
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example after a timer interrupt), the Key-
stone policy will flip back the permission
bits to make the enclave inaccessible.

Note:

If the system supports fewer
than 16 PMP registers, the
OS and firmware memory
cannot be protected during
enclave execution, as the lim-
ited number of PMP regis-
ters is insufficient to guard all
components simultaneously.

We denote the i’th PMP entries as pmp[i].

-: inaccessible (NO_PERM), =: accessible (ALL_PERM)

pmp[0:N] | | : undefined

net result |----------------------------------------|

Listing 1: PMP protection at boot time

-: inaccessible (NO_PERM), =: accessible (ALL_PERM)

pmp[0] |-------| | : Miralis

pmp[others] | | : undefined

pmp[N] |========================================| : OS memory

net result | - - - - - - -|================================|

Listing 2: PMP protection after Miralis initialization

-: inaccessible (NO_PERM), =: accessible (ALL_PERM)

pmp[0] |-------| | : Miralis

pmp[1] | |---------| | : Enclave

pmp[others] | | : undefined

pmp[N] |========================================| : OS memory

net result |-------|======|---------|===============|

Listing 3: PMP protection when the enclave exists but is not running

-: inaccessible (NO_PERM), =: accessible (ALL_PERM)

pmp[0] |-------| | : Miralis

pmp[1] | |=========| | : Enclave

pmp[others] | | : undefined

pmp[N] | |==| | : Buffer

net result |-------|------|=========|-------|==|----|

Listing 4: PMP protection while running the enclave

Note that while the virtualized firmware
can define its own PMP regions, Miralis
ensures these regions are assigned a lower

priority than those used by Keystone. This
guarantees that the enclaves remain se-
curely protected, as the higher-priority
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PMP regions defined by Keystone will take
precedence over the firmware’s regions.

With this protection mechanism, only Mi-
ralis itself can access the enclave. All other
executables, including the operating sys-
tem, virtualized firmware, and user-space
applications, are unable to access the en-
clave’s memory as it is protected via the
PMP registers. The PMP registers them-
selves remain protected, as only M-mode
software (i.e. Miralis) can modify them.

4 Practical implementa-

tion

In this section, we describe the practical
work involved in porting Keystone to Mi-
ralis.

4.1 Keystone Security Policy
in Rust

Miralis is implemented in Rust, a mod-
ern programming language designed with
safety in mind. Consequently, the Key-
stone Security Monitor was rewritten in
Rust to align with Miralis’ architecture and
leverage the language’s safety over C, the
language of the original implementation.

The ported Keystone implementation on
Miralis supports the following features:

4.1.1 Supported Features

• Enclave creation, destruction,
startup, pausing, and resumption.

• Enclave protection via RISC-V phys-
ical memory protection.

4.1.2 Unsupported Features

• Multi-threading: The implementa-
tion is not thread-safe when manipu-
lating enclaves in parallel.

• Data sealing & attestation: Not
implemented.

• Platform-specific plugins: The
FU540-specific cache partitioning
plugin to mitigate cache side-channel
attacks is not included.

• OS memory protection during
enclave execution: Not imple-
mented due to the limited number of
PMP registers available.

4.2 Automatic Build System

To facilitate the usage of Keystone with
Miralis, an automatic build system was
created using GitHub Actions, Makefiles,
and patch files. This system automates
the building and preparation of all required
components, making them ready for execu-
tion on Miralis.

The components outputted by the build
process are:

• A Linux image compatible with the
Keystone driver.

• An OpenSBI binary that jumps to
that Linux image.

• A modified version of the iozone
benchmark that can execute from in-
side an enclave.

• A file system containing examples
of Keystone hosts, runtimes, and
Eapps, including the ones used to run
the iozone benchmark.

4.3 Testing

Testing was conducted to verify the func-
tionality of the Keystone security policy.
An automatic test suite was implemented,
to validate enclave operations such as cre-
ation, destruction, startup, pausing, re-
suming, and memory protection via PMP.

8
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Additionally, the original Keystone test-
suite, comprising eight tests, was reused to
further validate the implementation. All
tests passed except for the following ones:

• fib-bench: Fails because it uses the
”rdcycle” instruction, which causes
OpenSBI to panic.

• data-sealing and attestation tests:
Fail as these features are not yet im-
plemented.

In total, over 1000 lines of code (LOC) were
developed across various components. The
Keystone security policy itself consisted of
450 lines of Rust code. The automatic
build system and patch files contributed
260 lines of code, while the test suite was
composed of 152 lines of code. Addition-
ally, around 150 lines of code were written
for supporting utilities (such as supporting
the Sstc RISC-V extension).

5 Conclusion

In this report, we successfully demon-
strated the integration of the Keystone
framework into Miralis. Keystone pro-
vides the essential functionality for creat-
ing and managing secure enclaves. Miralis,
in turn, enhances this setup by minimizing
the TCB, ensuring that firmware code is
isolated from the enclaves and cannot inter-
fere with their operations. This combina-
tion offers a powerful and secure platform
that leverages the strengths of both Key-
stone’s enclave management and Miralis’s
firmware virtualization.

6 Future Work

There are several promising directions for
further development. One immediate step
is running enclaves with Miralis on physi-

cal hardware, which would allow for bench-
marking the system and evaluating its per-
formance impact. Implementing features
such as enclave attestation and data seal-
ing is another key area, as these would sig-
nificantly extend Keystone’s functionality
and make it more versatile in real-world
applications. Customizing the system to
protect against specific threat models like
side-channel attacks is also an important
aspect. These efforts would refine the in-
tegration of Keystone with Miralis and un-
lock its full potential as a secure platform.
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