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ABSTRACT
This report presents a lockless communication mechanism
implemented in Rust for interprocess communication (IPC)
for a single consumer single producer (SCSP) pattern and
a ring buffer data structure. The SCSP pattern and lockless
algorithm offer high-performance data transfer. The report
discusses the design, implementation, and evaluation of the
lockless SCSP communication mechanism, highlighting its
benefits in reducing contention and improving scalability. Per-
formance benchmarks demonstrate its efficiency. The report
concludes by outlining potential extensions for accommodat-
ing multiple producers and consumers, enhancing the flexibil-
ity of the lockless SCSP mechanism in diverse applications.

Key words - TYCHE, trusted execution environment, inter
process communication, shared memory, ring buffer, single
producer single consumer

1 INTRODUCTION
Trusted Execution Environments (TEEs) are essential com-

ponents in modern computing systems that provide secure
and isolated execution environments for performing critical
computations. To fully harness the benefits of TEEs, efficient
and secure communication between different enclaves and
confidential virtual machines or processes is vital. This ne-
cessitates the development of a robust and high-performance
communication mechanisms for TEEs. The primary objective
is to establish a seamless and efficient communication in-
frastructure that guarantees the confidentiality, integrity, and
availability of transmitted data.

Shared memory communication emerges as a key mecha-
nism for inter-process communication (IPC) involving TEEs.
By allowing enclaves to share a common memory region,
shared memory communication enables direct and low-latency
data transfer. This approach eliminates the overhead of serial-
ization and data copying between processes, resulting in faster
and more efficient communication[5]. Moreover, the shared
memory region can reside within the secure boundaries of the
TEE, ensuring strong isolation and protection against external
threats.

Efficient shared memory communication is vital to support-
ing the communication needs of complex software systems
running within TEEs. As the number of TEE instances and
the complexity of their interactions increase, the ability to
handle multiple producers and consumers becomes crucial.

Therefore, a communication library for TEEs should be de-
signed and implemented to offer flexibility and scalability,
accommodating diverse communication patterns and meeting
the demands of real-world applications.

In our project, we focus on designing and implementing a
Rust library for shared memory communication within TEEs.
We want our library to be used safely by any user: we made
sure that no memory threat or leak of any kind is possible
when using it. Rust, a modern systems programming lan-
guage, combines high-level abstractions with low-level con-
trol, making it well-suited for developing secure and efficient
software components. Leveraging Rust’s memory safety and
concurrency features, our library aims to provide a reliable
and efficient communication framework for TEEs.

The initial focus of our Rust library for shared memory
communication centers on a single producer and single con-
sumer scenario, utilizing a ring buffer data structure. This
design choice facilitates efficient and ordered data transfer
between enclaves, while minimizing contention and synchro-
nization overhead. However, the library’s flexibility allows
for future enhancements to support more complex communi-
cation patterns, including multiple producers and consumers,
or different synchronization mechanisms.

In addition to the design and implementation of the Rust
library, this research report evaluates the performance char-
acteristics of shared memory communication. We assess the
throughput of our library under various workloads and system
configurations. This performance analysis provides valuable
insights into the practical implications of using shared mem-
ory communication for IPC within TEEs, aiding in identifying
potential optimizations and trade-offs.

Furthermore, we discuss potential future directions and
extensions of our Rust library for shared memory communica-
tion. As TEE-based applications evolve, there may be a need
to support multiple TEE instances, advanced synchronization
mechanisms, or additional security features. We emphasize
the adaptability of our library, highlighting its potential for
growth to meet evolving needs and requirements.

Through this research, we contribute to the field of commu-
nication for TEEs by providing a comprehensive and efficient
solution for shared memory communication using Rust. Our
work aims to enhance the capabilities and possibilities of
inter-process communication within TEEs, promoting the de-
velopment of secure, scalable, and efficient software systems.



By enabling seamless and efficient communication between
enclaves, we strive to bolster the security, privacy, and collab-
oration capabilities of TEE-based applications.

2 BACKGROUND AND DEFINITIONS
2.1 Defintions
Definition 1 (inter-process communication) :

inter-process communication refers to the mechanisms and
techniques used by processes or threads to exchange data,
synchronize their actions, and collaborate in performing tasks.
IPC enables communication and coordination between sepa-
rate processes running on the same system or across different
systems.

Definition 2 (Ring buffer) :
A ring buffer, also known as a circular buffer, is a data struc-

ture that represents a fixed-size queue where data elements are
stored in a circular manner. It consists of a fixed-size buffer
or array and two indices: a read index and a write index. The
read index points to the next element to be read from the
buffer, and the write index points to the next position where
an element can be written. When the write index reaches the
end of the buffer, it wraps around to the beginning, creating a
circular behavior.

Definition 3 (Single producer-Single consumer) :
Single producer-single consumer refers to a communication

pattern or scenario where there is only one consumer thread or
process that reads data from a buffer, and one producer thread
or process that writes data into the same buffer. In SPSC, the
producer writes data to the buffer, and the consumer reads
data from the buffer without any concurrent access from other
producers or consumers.

2.2 Lockless Circular Buffer over Shared
Memory

Lockless Circular Buffer over Shared Memory is a technique
that offers efficient and low-latency communication between
processes by utilizing a circular buffer data structure without
the need for locks or synchronization mechanisms. The lock-
less design allows for concurrent read and write operations,
reducing contention and maximizing throughput. The use of
shared memory further enhances the performance by elim-
inating the overhead of data serialization and inter-process
communication. This approach has been widely adopted in
various domains where high-speed data transfer is crucial,
such as real-time systems, high-performance computing, and
distributed computing. [7]

2.3 Rust memory ordering
Our code use atomic operations (namely load and store)
to ensure consistency between processes. In Rust[1], mem-
ory ordering is crucial to ensure proper synchronization and
consistency when multiple threads or processes access shared
data. The recommended memory ordering in Rust is "Se-
quentially Consistent" ordering (SeqCst), and provides the
strongest consistency guarantees by enforcing a total order
of all atomic operations, ensuring appearance in a global lin-
ear order. However, this ordering may introduce unnecessary
synchronization overhead, especially in scenarios where strict
consistency is not required. In our scenario we aimed to strike
a balance between consistency and performance. We found
that SeqCst ordering, with its strong consistency guarantees,
imposed more overhead than necessary.

In our final implementation, we used Acquire load and
Release store.
Acquire memory ordering guarantees that subsequent mem-

ory operations occur after the Acquire operation, which is
essential for maintaining the desired order of data access be-
tween processes in TEEs. Paired with the Release ordering
flag, Acquire ordering forms a "memory sandwich" that en-
sures synchronization with other CPUs, facilitating secure and
efficient communication. In weakly ordered systems (such
as ARM and Risc-V), additional CPU instructions, such as
memory fences, are used to synchronize the Acquire opera-
tion with memory modifications by other CPUs, preventing
memory reordering before the Acquire load. On strongly
ordered CPUs (such as x86_64), these additional instructions
and memory fences have no performance cost but maintain
the desired ordering and synchronization guarantees.

Furthermore, in our project we leveraged this ordering
with Release ordering to ensure that memory operations
occur before the Release flag. This ordering is commonly
used alongside Acquire ordering. In weakly ordered systems,
memory fences are employed to ensure correct ordering and
visibility for observing cores. An Acquire load guarantees
the processing of all messages and fetches the correct value,
even if other cores invalidate the loaded memory. A Release
store must be atomic and invalidates other caches holding the
value before modification. While Release ordering is weaker
than Sequentially Consistent (SeqCst), in terms of consis-
tency guarantees, it offers better performance, which is cru-
cial for efficient communication within the TEEs. Release
and Acquire ordering are often used together ensuring that
specific operations occur after acquiring the lock but before
its release. Strongly ordered CPUs invalidate all instances of
a shared value in L1 caches before modification, guaranteeing
an updated view for an Acquire load and instant invalidation
of cache lines on other cores for a Release store.
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3 ALGORITHM
We selected a single-producer single-consumer (SPSC) sce-
nario for our inter-process communication (IPC) mechanism.
This decision allows us to design and implement our algo-
rithm with careful consideration, avoiding unnecessary com-
plexity while ensuring flexibility and scalability for future
endeavors.

3.1 Motivation
Different mechanisms for inter-process communication such
as sockets and networking, remote procedure calls (RPC) or
pipes and FIFOs are available. For TEEs, where the focus is
on local and secure communication, the use of sockets and
networking may introduce unnecessary overhead and security
concerns. RPC frameworks often involve serialization and
deserialization of function arguments and results, introducing
computational and communication overhead that may not be
suitable for high-performance TEE communication. Pipes
and FIFOs are typically designed for communication between
unrelated processes and may not be optimized for the SPSC
pattern. They involve data going through the kernel, which is
the opposite of what we want with TEEs.

User-level shared memory (Figure 1) thus seemed like the
perfect candidate. This mechanism shows great performance
by directly accessing shared memory regions, the overhead
associated with serialization and deserialization or copying
data between processes is minimized. This results in lower
latency and higher throughput. Shared memory within TEEs
provides enhanced data privacy and security. The shared mem-
ory region resides within the secure boundaries of the TEE,
protecting the data from external threats. This ensures the
confidentiality and integrity of sensitive information, making
shared memory a secure option for inter-process communi-
cation in TEEs. In addition, shared memory offers a good
trade off between simplicity and scalability. As the number of
TEEs grows, shared memory enables direct communication
channels between them, facilitating efficient collaboration
and synchronization.

More specifically we decided to use a ring buffer data struc-
ture to implement the shared memory IPC mechanism. Ring
buffers are efficient because they use a fixed-size buffer, elim-
inating the need for dynamic memory allocation or copying
data between processes. The use of simple pointer updates and
synchronization mechanisms results in low overhead for data
transfer. The producer and consumer can operate indepen-
dently, allowing for asynchronous communication between
processes. However, ring buffers come with their limitations
as they do not inherently support message boundaries. If mes-
sages of different sizes are stored in the buffer, additional
synchronization or signaling mechanisms may be needed to

Figure 1: Shared memory: main idea

Figure 2: Ring buffer

indicate the size or presence of each message. This will be
described in more details in section 5: Implementation for
unfixed size messages.

3.2 Description
A ring buffer (Figure 2) is a specific implementation of shared
memory IPC that allows for efficient and synchronized data
transfer between two processes. It is a circular buffer where
data is written by one process (producer) and read by another
process (consumer). The structure of a ring buffer consists of a
fixed-size memory region. This region is then split into same-
sized slots. The buffer contains two pointers namely head
and tail. The correct position for both writing and reading
is determined by the head (reading), and the tail (writing).
Those are updated when the data is produced or consumed.

The write pointer can only be updated by the producer and
the read pointer can only be modified by the consumer. When
a pointer reaches the end of the buffer, it wraps around to
the beginning (hence the "ring" in ring buffer). The producer
and consumer must coordinate and avoid reading from or
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Figure 3: An empty ring buffer

Figure 4: A full ring buffer

writing to the same slot simultaneously. Hence the buffer’s
state, such as whether it is full or empty, can be determined
by comparing the positions of the read and write pointers.

In our implementation the buffer is said to be empty (Figure
3) when both pointers are equal (same index). The buffer is
said to be full (Figure 4) when the write pointer is 1 element
behind the read pointer in the ring (i.e. for a ring buffer of
capacity N, if the read pointer is at 0 and the write one is at
N-1). This relation can be represented by the operation

(read_idx + buffer_size) - write_idx ≡ 1 mod buffer_size

In a few words, a producer needs to check if the buffer is full.
If it is, the producer will not write anything but will return an
error stating that the buffer is full. If not, the consumer will
write the element to the buffer. A consumer will check if the
buffer is empty. If it is, the consumer will not read anything
and the read pointer will not be incremented. If it is not, the
consumer will read the element on the buffer and its pointer
will be incremented.

4 IMPLEMENTATION FOR FIXED-SIZE
MESSAGES

The first goal of our library is to implement it for fixed size
message (here we choose u32 values that are represented in 4
bytes). In that’s way we can build strong foundations for our
algorithm, and get familiar with Rust and its security rules.
This library should be used without having to worry about
memory security issues for the users. Our library creates a
ring buffer to be used for SPSC. An user is able to create
it starting from a memory space allocated for sharing (its
address and its length).

4.1 Structure
Three structs enable us to implement this: RingBuffer, Con-
sumer, Producer. Structs in Rust allow you to group multiple
values of different types together. Each value in a struct is
given a name, making it easier to understand the meaning of
the values. Structs provide flexibility as you don’t have to rely
on the order of the data to specify or access the values of an
instance.

1 pub struct RingBuffer {
2 pub buffer: &'static mut [u32],
3 read_idx: &'static AtomicUsize,
4 write_idx: &'static AtomicUsize,
5 }

First, the RingBuffer struct represents the ring buffer. We
characterize it with a mutable reference to a slice of u32 val-
ues that has a static lifetime, representing the available slots
of our ring buffer. Each slot can contain an u32 which is the
type of our messages. Our ring buffer also needs to have two
pointers, one for the head (read) and one for the tail (write).
In the context of SPSC scenario, these two values can be
changed by two different processes, namely the consumer
and the producer. It is important that those values are synchro-
nized between each processes. An &’static AtomicUsize
represents a mutable reference to an AtomicUsize value with
a ’static lifetime. This means the reference can be accessed
and modified throughout the program’s entire duration, en-
abling concurrent access to the underlying value with atomic
operations, ensuring safe and synchronized access in multi-
threaded scenarios.

Without the use of atomic operations, there is a risk of en-
countering data inconsistency issues. For example, a process
could write data to the buffer and update the pointer indicating
the availability of new data. However, without proper synchro-
nization provided by atomic operations, other cores or threads
may not yet see the updated data, leading to the possibility
of reading outdated or incorrect values. Memory ordering
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extends beyond the scope of a single memory address and
aims to synchronize memory updates across different cores
or threads.

The structure of the consumer and the producer are quite
similar. Both take a mutable reference to a RingBuffer, and
two usize which are locally stored value of the head and tail
indices. Theses two values are important in order to increase
the throughput of our library by decreasing the need to fetch
the corresponding atomic values.

1 pub struct Producer {
2 pub inner: &'static mut RingBuffer,
3 local_read: usize,
4 local_write: usize,
5 }
6

7 pub struct Consumer {
8 pub inner: &'static mut RingBuffer,
9 local_write: usize,

10 local_read: usize,
11 }

4.2 Initialisation
The initialisation process of our ring buffer ensures proper
alignment, non-null pointers, and correct initialization of the
read and write pointers, as well as the buffer. This sets up the
initial state for the ring buffer, allowing subsequent push and
pull operations by the producer and consumer, respectively.
The new function takes a pointer (ptr) and its length (len) as
inputs, representing the allocated memory space. The new
function calls the init() function, which returns a tuple
containing initialized producer and consumer instances.

One important thing to consider is that a lot of functions
used in the initialisation of our RingBuffer are unsafe{}
functions. In Rust, the unsafe keyword is used to mark cer-
tain blocks, functions, or traits that contain operations or
constructs that are not guaranteed to be memory-safe, data-
race-free, or compliant with other safety guarantees provided
by the Rust language. The unsafe keyword essentially al-
lows one to bypass some of Rust’s safety checks and take
the responsibility of ensuring safety yourself. The Rust docu-
mentation [3] thoroughly documents such function, in such a
way that the Safety check to perform are clearly stated (i.e.,
a pointer needs to be valid, to be a certain size, etc.). This
documentation ensures the safety of our library.

The allocated shared memory space is divided in three
parts: three raw pointers, namely write_ptr, read_ptr and
buffer_ptr.

The first two pointers are of type AtomicUsize. They need
to be non-null, correctly aligned and initialized to 0. In or-
der to increase the throughput and reduce cache invalidation,

we decided to put these two pointers whithin different cache
lines (separate them to at least 128 bytes for the M1 chip
architecture that we are using to run the test of our library).
We aimed to have the second pointer as close as possible
to the first while ensuring alignment and cache line spacing.
When multiple threads or cores are accessing these variables
concurrently, having them in separate cache lines can reduce
cache contention and minimize the frequency of cache line
invalidation caused by concurrent updates. Cache contention
occurs when multiple threads or cores simultaneously attempt
to access the same cache line. In such cases, cache coher-
ence protocols may cause the cache line to be invalidated and
reloaded, leading to additional latency and reduced through-
put.

The last pointer is the one that will point to our buffer, it is
raw pointer u32. Based on its value we then compute the size
of our buffer (number of elements, u32, that we can push in
it). This size is computed based on the length of our memory
space, the space already used by our previous pointers (includ-
ing the empty space for alignment and the change of cache
line). Once we compute it and find the correct alignment for
our buffer_ptr we use the std::slice::from_raw_parts_mut()[4]
function. It will return a mutable slice from a pointer (buffer_ptr)
and a length (buffer_size).

1 unsafe fn init(
2 read_ptr: &'static AtomicUsize,
3 write_ptr: &'static AtomicUsize,
4 buffer_data: &'static mut [u32],
5 ) -> (Producer, Consumer) {
6 let rb: RingBuffer = RingBuffer {
7 buffer: buffer_data,
8 read_idx: read_ptr,
9 write_idx: write_ptr,

10 };
11 let ring_buffer_ptr =

Box::into_raw(Box::new(rb));
12 (
13 Producer { inner: &mut

*ring_buffer_ptr, local_read: 0,
local_write:0},

14 Consumer { inner: &mut
*ring_buffer_ptr, local_write:
0,local_read:0},

15 )
16 }

Ultimately, the initialization process creates a new Ring-
Buffer and assigns its corresponding pointer to a consumer
and producer. Both these struct should initialize their local
read and write pointer to 0.
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To give a more concrete example, let’s state that the shared
memory region has as a start address 0x02 and a length of
1024 bytes. The read_ptr’s address is 0x8 (since AtomicUsize
is 8-align), the write_ptr’s address will be 0x90 (we want
to change cache-line, therefore we add 128 bytes, there is no
need to add bytes to align this AtomicUsize since 0x90 is a
multiple of 8). The slice representing the buffer will have 109
u32’s slots, its start address will be 0x98.

4.3 Functions
Now let us focus on the function push and pull. These func-
tions are defined for the Producer and Consumer processes,
respectively.

Both of these functions follow the same workflow. In order
to reduce the number of memory accesses and to increase the
throughput, we limit the number of atomic operations that
are unnecessary. When two threads are running at the same
time, the processor will allocate some processing times for
each, resulting in a block of push or pull instructions. It is
thus, not necessary to load the read or write pointers at each
instruction.

Let us take the push() function to illustrate it. The write
pointer can only be modified by the producer, therefore, a
producer can keep a local version of their pointer value, and
increment it each time a push is successful. The producer,
then, only need to store the updated value into the atomic
without the need to load it first. Concerning the read pointer,
a local copy is made in order to limit the number of memory
accesses. As explained earlier, the atomic values do not need
to be loaded with each function call, for example if we load
the atomic read_ptr at time T and store its value N in the local
variable local_read, a producer does not need to load it again
until its local variable local_write is equal to N-1, meaning
when the buffer is full based on these local variables. Our
push() function takes a mutable reference self (the producer)
as an argument along with the value to be pushed. It can be
divided in three main steps:

(1) Check if the buffer is full (with respect to the local
variables)

(a) If it is not full, proceed to point (2).
(b) If it is, then load the atomic value read_ptr into a

variable loaded_read.
(c) If the local value is the same as the atomic one, return

an error indicating that the buffer is full.
(d) If both values are different, update the local variable:

local_read = loaded_read
(2) Push the value into the buffer.
(3) Increment the local_write variable (modulo the size of

the buffer) and update the atomic value of write_ptr

The use of atomic operations in our implementation is
crucial for ensuring proper synchronization and consistency
in shared memory communication. Atomic operations provide
specific memory ordering semantics that guarantee visibility
and ordering of read and write operations across different
cores or threads.

In our case, the atomic operations serve two important pur-
poses. First, they ensure that any write operation performed
before the write to the atomic variable becomes visible to any
subsequent reader operation (release semantic). This guar-
antees that the data written to the shared memory buffer is
properly synchronized and available for consumption by other
processes.

Second, atomic operations ensure that any read operation
performed before the read of the atomic variable behaves as
if it happened after the read of the atomic (acquire semantic).
This ensures that all necessary data updates are retrieved
before reading from the shared memory buffer, preventing the
possibility of reading incomplete or inconsistent data.

4.4 Throughput
In the throughput analysis for fixed-size messages, we evalu-
ated the performance of our shared memory IPC mechanism
in terms of data transfer rate. The throughput measurement
provides insights into the efficiency and speed at which data
can be exchanged between the producer and consumer. The
throughput is highly variable based on the device machine
used to do the benchmark. For these measurements we used a
MacBook Pro with an M1 chip, and equipped with 8 CPUs.
The benchmarking process was performed under optimal con-
ditions, with no other concurrent activities running in the
background.

We examined factors such as buffer size, number of mes-
sages sent or size of messages to understand their impact on
the data transfer rate. The showcased results are messages of
4 bytes (u32). The memory space size varies between 1’000
and 1’000’000, the number of messages varies between 1’000
and 100’000’000. The example that allows us to calculate the
throughput of our library is simple: We create a RingBuffer
with a raw pointer and memory space of length CAPACITY,
along with corresponding Producer and Consumer instances.
We create two parallel threads, one for the producer to push
(write) a message to the shared memory, and another, for the
consumer to pull (read) the available messages. The producer
can write the i+1th message if and only if the ith message
has been correctly pushed (no error). If an error occurs, the
producer needs to try to push it again. The consumer follows
the same workflow.
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Figure 5: 4 bytes long messages’ throughput

We start a timer before initiating both threads and stop it
when both threads have completed. The throughput is then
calculated as follows:

number_o f _messages∗4
elapsed_time

In this equation, the multiplicative factor 4 corresponds to the
number of bytes needed to represent each message, consider-
ing they are u32 messages.

During our benchmarking, the scenario with 100’000’000
messages sent was the only one which took a bit more than 1
seconds. Figure 5 shows that with this scenario our through-
put is approximately 100MB/s. The throughput increases with
the size of the memory allocated. This throughput was sur-
prisingly low compared to what we anticipated. One reason
for this result may be due to the size of the messages tested (4
bytes). indeed, this can result in poor cache use and less par-
allelism in the CPU compared to the use of bigger messages.
This hypothesis was confirmed when we modify the library
to write and read 16 bytes messages (u128), the throughput
has significantly increased (up to 5 times), as we can see on
Figure 6

The larger the size of the message is, the bigger the through-
put. Since the throughput does not appear linear it appears
that the size of both messages is not enough to compensate
for the overhead caused by cache invalidation.

5 IMPLEMENTATION FOR UNFIXED
SIZE MESSAGES

5.1 Modification
In our journey to implement a scalable library, we decided
to implement our mechanisms for unfixed size messages. A
producer can write any type of data to the buffer, and, more
importantly, a consumer can read the entire data without
missing any bytes of information.
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Figure 6: 16 bytes long messages’ throughput

To do so, we needed to modify our implementation and
some part of our algorithm since the ring buffer data struc-
ture only supported slots of the same size. This is why our
ring buffer is now sliced into single-byte slots. All types of
messages and information can be expressed as a vector of
bytes. To avoid adding too much overhead or losing too much
memory, we decided to limit the size of the messages to a
number that can be represented by 2 bytes.

Beside this, our initialization stayed the same. However,
the write and read functions need to come up with a new
workflow. The write method will now compute the size of the
message being sent and verify not only if the buffer is full,
but also if it can store the message. This would be done by
another function that computes the available capacity of the
buffer

(read_idx + buffer_size) - (write_idx+2) mod buffer_size

We add 2 to the write index to store the size of the message
in the first two bytes following the pointer before storing the
message’s bytes. Then we need to compare the capacity with
the size of the message. A full buffer and a buffer that does
not have enough capacity result in different error messages,
allowing the user to handle them according to their preference.

We then need to convert the length of the vector into a byte
array (little endian) where each entry will be stored in a buffer
slot. In a for loop, we will store every element of our message
(represented as a vector of bytes) into our ring buffer and
increment our local write index. At the end of the for loop,
we store our local variable into the atomic ring buffer.

The read function also encounter some modification in this
implementation. The consumer needs to read the first two
bytes and convert it (little endian) into an integer in order to
do a for loop to read every bytes that constitutes the message.
In the for loop the local read index is incremented for each
bytes that is read. At the end of the function we store our local
variable into the atomic ring buffer.
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5.2 Performance and possible modifications
During our evaluation of the unfixed size message implemen-
tation, we observed unexpected results in terms of throughput.
The measured throughput was lower compared to the fixed
size implementation. This outcome was anticipated for small
size messages, as the additional overhead required by our im-
plementation did not provide significant benefits. Surprisingly,
even larger messages experienced low throughput. However,
it is worth noting that the throughput still increased as the
size of the messages grew, mirroring the behavior observed
in the fixed size implementation. Additionally, we noticed
that the buffer size did not have a significant impact on the
throughput, similar to the fixed size implementation.

Despite our efforts, we were unable to pinpoint the exact
bottleneck in our implementation. We suspect that the exam-
ple used for benchmarking may have influenced the results.
While our implementation functions as intended, further work
is required to accurately assess the library’s true throughput
and identify any performance bottlenecks. This understanding
is crucial for refining our implementation and enhancing its
performance.

One possible modification that can be easily implemented
into our library, depending of future constraints or require-
ments, can be a switch case on the message type. such that
each type can be represented as an integer (i.e u32 -> 1; char ->
2...) to help the consumer interprets the bytes vector received
without too much overhead.

We can also add intermediate functions in order to encode
messages into fixed size ones. We can do it by using encoding
algorithms or hashing.

6 CHOICES
6.1 Freedom library’s users
Since the library is in its early stages, the users still have a lot
of freedom regarding the use of our library. We enforce this
with the use of multiple design choices for our implementa-
tion.

The library offers implementations for both fixed and un-
fixed size messages. This design choice provides flexibility
to users, allowing them to choose the appropriate message
size based on their specific communication requirements. By
supporting both types, the library caters to a wider range of
use cases and enables users to efficiently exchange data of
varying size within the shared memory.

Our library will not crash if we cannot read or write any
data from, or into the buffer. We decided to return an error
with meaningful messages (i.e. "The local buffer is full, retry",
"You currently do not have enough space to write the value"
etc.). This enables users to decide subsequent actions, (do they
want to retry to send the same message), and gives them more

information on the buffer activities and its state. This will also
help users understand our memory communication approach
to better use it in order to achieve optimal performances.

By implementing support for fixed and unfixed size mes-
sages and providing meaningful error messages, the library
strives to offer a user-friendly experience. Users can choose
the message size that suits their needs, whether it’s a pre-
defined fixed size or a dynamically determined size. Addi-
tionally, the library’s behavior, by returning informative error
messages, ensures that users can easily handle different buffer
states scenarios without encountering unexpected crashes or
undefined behavior.

While these design choices enhance usability, trade-offs
and considerations should be taken into account. Handling
unfixed size messages introduce additional complexity, such
as the need for synchronization and signaling mechanisms to
indicate message boundaries or sizes. Furthermore, support-
ing both fixed and unfixed size messages may incur a slight
overhead cost compared to a library that solely focuses on
fixed-size messages. Nevertheless, these trade-offs are care-
fully weighed against the goal of providing flexibility and
ease of use for users working with shared memory IPC in
TEEs.

6.2 Security checks
While the library is designed to provide freedom of use to
the users as seen above, it still needs to be secure as we are
operating inside TEEs and want to prevent malicious com-
munications between processes/enclaves. Our code, as well
as our choice of shared memory, has been carefully designed
with that perspective in mind. The library incorporates vari-
ous safeguards to ensure data integrity and protection against
potential vulnerabilities, mitigating the risk of data tampering,
and other security threats.

The library is specifically designed to target Tyche[6], a
trusted execution environment (TEE) platform. By leveraging
Tyche’s inherent memory isolation capabilities, the library
creates a secure execution environment where shared memory
communication takes place. The shared memory region is
confined within the secure boundaries of the TEE, ensuring
that only authorized processes within the TEE can access
or modify the data. This isolation provides a strong defense
against unauthorized access or tampering, establishing a ro-
bust security barrier. The library’s design and implementation
specifically address the SPSC scenario within the Tyche TEE
environment.

Rust is often considered a secure language due to its fo-
cus on memory safety and strong compile-time guarantees.
For example Rust’s ownership and borrowing system ensures
memory safety by enforcing strict rules on memory access.
It eliminates undefined behavior, which can lead to security
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vulnerabilities. It achieves this through various mechanisms,
such as preventing null pointer dereferences, ensuring thread
safety, and avoiding data races. Rust’s ownership and bor-
rowing system guarantees thread safety by preventing data
races. It enforces strict rules to ensure that concurrent access
to shared data is properly synchronized. Rust provides safe ab-
stractions for concurrent and parallel programming. It offers
built-in constructs like threads, channels, and synchronization
primitives, which are designed to prevent data races and en-
sure thread safety. While Rust provides strong foundations
for security, we still need to follow security best practices
and apply secure coding techniques to ensure the overall se-
curity of their applications. This is even more important in
our project since we interact with raw pointers, with unsafe
functions. While doing so, we bypass some of the security
limits Rust has.

As stated in section 4.2, Rust has great documentation
about raw pointers, or even unsafe function to enable user
of their language to code as safely as possible. This is the
documentation that we used in order to make sure malicious
scenarios result in an error in our library. Our library includes
robust error handling and logging mechanisms to detect and
report potential security incidents. By carefully handling er-
rors and logging relevant information, the library facilitates
the identification and investigation of security-related events,
allowing for timely responses and mitigation of potential
threats.

During the initialization phase, our library takes additional
security measures to ensure the integrity and reliability of
the shared memory. These measures include checking each
pointer created during initialization to ensure that it is not null
and that it is correctly aligned. The library verifies that each
pointer created during initialization is not null. This check
is crucial for preventing potential null pointer dereference
vulnerabilities, which could lead to crashes or security ex-
ploits. By ensuring that pointers are valid and not null, the
library avoids accessing uninitialized or invalid memory lo-
cations, enhancing the overall security and stability of the
shared memory communication. In addition to null pointer
checks, the library also validates the alignment of each pointer
created during initialization. Alignment refers to the memory
address at which data is stored, and it plays a significant role
in the performance and security of memory operations. By en-
forcing correct alignment, the library avoids potential issues
related to misaligned memory access, which can lead to data
corruption, performance degradation, or even security vulner-
abilities. Proper alignment ensures that memory operations
are performed efficiently and correctly, reducing the risk of
unintended behavior or security vulnerabilities.

As all secure code, the library is open[2]!

7 FUTURE WORKS
As the shared memory inter-process communication library
is still in its early stages of development and deployment, it is
essential to acknowledge that the precise needs and require-
ments of future users may not be fully apparent at this time.
However, the library has been designed with flexibility in
mind, allowing for potential modifications and enhancements
to meet evolving demands. The following areas represent
potential avenues for future improvements and adaptations:

Multi-Consumer Support: The current focus of the li-
brary is on facilitating communication between a single pro-
ducer and a single consumer using a ring buffer. While this
design suits many use cases, it is crucial to consider the pos-
sibility of future scenarios that require multiple consumers
or producers. Implementing support for such configurations
would enable greater scalability and accommodate more com-
plex communication patterns.

Performance Optimization: Ongoing efforts can be di-
rected toward optimizing the library’s performance. This
may involve fine-tuning the existing implementation, explor-
ing advanced algorithms and data structures, and leveraging
platform-specific features or hardware acceleration to enhance
throughput and reduce latency.

64-bit arithmetic: Currently, the modulo arithmetic used
limits the maximum number of elements the buffer can hold
to N-1. By employing 64-bit arithmetic, it would be possi-
ble to increase this capacity and allow the buffer to be truly
full with N elements. This would open up new possibilities
for buffer utilization, offering greater flexibility and more
efficient use of available memory space. However, it would
require a revision of the buffer’s data structure and associated
operations to accommodate larger index and pointer values.
Exploring this approach could lead to significant performance
and scalability improvements for the library, especially in
scenarios with higher workloads.

It is important to note that these potential future directions
are preliminary and subject to change as the library evolves
and user needs become clearer. The focus remains on main-
taining a flexible and adaptable design that can accommodate
a wide range of requirements in shared memory inter-process
communication.

8 CONCLUSION
In conclusion, this report presens the design and implementa-
tion of a communication mechanism in Rust for inter-process
communication (IPC) within Trusted Execution Environments
(TEEs). The lockless mechanism, based on the single pro-
ducer single consumer (SPSC) pattern and a ring buffer data
structure, offers high-performance data transfer with reduced
contention and improved scalability.

9



The primary objective of the project was to establish a
seamless and efficient communication infrastructure that en-
sures the security principles of transmitted data within TEEs.
By leveraging shared memory communication, the library
enables direct and low-latency data transfer, eliminating the
overhead of serialization and data copying.

The design choices made in the library prioritize flexibility
and ease of use. The implementation caters to both fixed and
unfixed message sizes, ensuring that the library is adaptable
to various application requirements. Additionally, the library
handles buffer full or empty scenarios by returning meaning-
ful error messages instead of crashing, therefore enhancing
usability and reliability.

Security considerations were paramount in the library’s
design and implementation. Measures were taken to ensure
data integrity and protection against potential vulnerabilities.
Memory isolation within the TEE environment and secure
initialization procedures contributed to the overall security of
the communication process.

Using performance benchmarks, the library’s efficiency
and throughput were evaluated, and demonstrated significant
suitability for IPC within TEEs. The results validate the effec-
tiveness of our chosen IPC mechanism in reducing contention
and improving data transfer rates.

Looking forward, the library offers potential extensions
to accommodate multiple producers and consumers, further
enhancing its flexibility and scalability. This adaptability en-
sures that the library can meet the evolving communication
needs of TEE-based applications as they grow in complexity.

By providing a comprehensive and efficient solution for
shared memory communication using Rust, this research con-
tributes to the field of communication for TEEs. The library’s
capabilities aim to enhance the security, and collaboration
of TEE-based applications, promoting the development of
secure, scalable, and efficient software systems.

Overall, this project advances the state of inter-process
communication within TEEs, enabling seamless and efficient
communication between enclaves while maintaining a strong
focus on security and performance.
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