
TYCHE: Trusted Boot
Maëlys Billon

maelys.billon@epfl.ch
École Polytechnique Fédérale de Lausanne

ABSTRACT
In this study, we aimed to examine the measuring launch
environment (MLE) process in Intel trusted execution tech-
nology (TXT) in order to implement a trusted boot for our
system. We identified three main components of this process:
the SMX instruction GETSEC [SENTER], an authenticated
code module, and the measured launch environment (MLE).
Our analysis also revealed that TXT introduces multiple mem-
ory spaces to enhance security between components. While
implementing TXT on top of QEMU, we encountered several
issues that gave us a deeper understanding of the complexity
of the TXT architecture. Our work highlights the importance
of thoroughly examining the measuring launch environment
process in order to ensure the security of our system and
its ability to trust applications and prevent self-propagating
malware, data breaches, and other attacks.

Key words - TYCHE, Virtual machine monitor, Trusted
boot, Intel trusted execution technology, measuring launch
environment, authenticated code module, dynamic root of
trust, rootkit

1 INTRODUCTION
As cyber threats become increasingly sophisticated, organi-

zations must implement strict security measures and carefully
examine every aspect of their execution environment to pro-
tect against them. One type of malicious threat is the rootkit,
which modifies or replaces core system files and programs
with malicious versions in order to conceal itself and its activ-
ities. Rootkits can be introduced to a system through various
means, such as exploiting security vulnerabilities, using social
engineering tactics, or being bundled with other software. To
ensure the security of the operating system and applications, it
is necessary to establish and maintain isolation between them,
so that the compromise of one does not affect the others. This
is where the virtual machine monitor (VMM) comes in. By
enforcing isolation, the VMM ensures that the security of the
operating system and applications is maintained, even if one
of them is compromised. If the VMM is compromised, the
attacker could potentially bypass the isolation mechanisms
and gain access to sensitive information stored in other parts
of our system.

Figure 1: Global picture of our goal

In this report, we will delve into Intel trusted execution
technology (TXT) [2] and explore how it works. TXT adds
security features such as measured launch and protected ex-
ecution to the digital office platform, and is supported on
certain Intel processors and chipsets (supported since Intel
Core 2 Duo (released in 2006)/ICH9(released in 2007)). In
order to utilize this technology, both hardware and software
requirements must be met. At the hardware level, systems
must be based on Intel Xeon processors with support for Intel
TXT and Intel VT-x, and must also have a trusted platform
module (TPM) added to the chipset to ensure that secrets are
not spoofed. On the software side, the operating system and
hypervisor must support Intel TXT. Our BIOS therefore needs
to enable the trusted platform module and Intel TXT. On the
software side, we just need to make sure that our operating
system and hypervisor support Intel TXT.

One aspect of TXT that will be particularly useful in imple-
menting a trusted boot is the measured launch environment
(MLE). In this report, we will explore how to use MLE to
measure a trusted part of the operating system (OS) and use
this measurement to provide a certificate to our platform if



the subsequent boot measurement matches the trusted mea-
surement. As illustrated in Figure 1, our goal is to certify
that the operating system is booting in a trustworthy manner,
serving as the trusted root of our system. Using Intel TXT,
specifically MLE, we will aim to jump from one stage of the
boot process (stage 1) to another (stage 2) (depicted in Fig.2)
and store the measurement in the TPM. This certificate will
enable us to request certificates for all applications running in
our system from our operating system.

In order to achieve our goal, we will first gain an under-
standing of Intel trusted execution technology (TXT) and how
to launch a measurement of it. We will then demonstrate the
process for implementing TXT on our platform and identify
any issues that arose during this implementation due to the
use of QEMU, an open-source virtual machine and emulator
that can be used to run operating systems. To address these
issues, we will delve deeper into the interactions between
the various components of the measuring launch environment
process and examine how they can work together securely.

2 RELATED WORK
Trusted execution environment: TrustVisor

TrustVisor [7] is a type of hypervisor that is designed
to create a trusted execution environment (TEE) on a com-
puter system. A hypervisor is a software layer that allows
multiple operating systems to run on a single physical host,
by abstracting the underlying hardware and creating virtual
machines (VMs) for each operating system to run on. TrustVi-
sor is a specialized type of hypervisor that is designed to
provide a higher level of security than traditional hypervisors,
by creating a TEE for running trusted applications.

The TEE provided by TrustVisor is intended to be isolated
from the rest of the system, and is designed to protect sensi-
tive data and operations from tampering and external threats.
TrustVisor is designed to be used for contexts where security
is a high priority, such as in government, military, and finan-
cial applications. It is implemented as a type 1 hypervisor,
which means that it is running directly on the machine, as
we want Tyche to do. The type 1 hypervisors run at a lower
level in the system than traditional hypervisors (type 2, such
as Linux’s KVM), and are able to provide a higher level of
security and isolation.

Trustvisor uses a two-stage attestation process. It boots
its hypervisor through the AMD Trusted Boot mechanism
and creates an attestation for the enclaves. Clients can then
verify the enclave’s authenticity by checking both Trustvisor’s
hardware attestation and the enclave’s software attestation.

This trusted boot and two-stages attestation mechanisms is
what we are aiming to do with Tyche. One main difference is
that it we will not use AMD trusted boot mechanism but the
Intel one (TXT). The rest of the report will delve into how we
plan to utilize Intel technology to achieve this goal.

3 INTEL TXT
3.1 Definitions

Definition 1 (Root of trust) :
Root of trust (RoT) in cybersecurity refers to a hardware

or software component that serves as a starting point for
determining the trustworthiness of a system. As RoT’s are
considered inherently trustworthy, they must be secured by
design. These components can be used to verify the integrity
and authenticity of firmware and software, ensuring only
trusted software is executed on a device or system.

There are two types of root of trust: static and dynamic.
The difference between a static root of trust (SRoT) and a

dynamic root of trust (DRoT) lies in their ability to be modi-
fied. SRoT, which is established at the time of manufacturing
or deployment and cannot be altered, is used to establish a
secure boot process and verify the authenticity of firmware
and software. Although effective in maintaining the security
of a device or system, it may not be able to respond to new
security threats.

On the other hand, a DRoT can be updated to address
new security threats or improve security features, providing
ongoing security for the device or system. However, this
flexibility comes at the cost of dependability, as a DRoT can
be modified.

Another distinction between the two is the scope of the
trust measure. SRoT covers the entire boot process from start
to finish, while a DRoT can only be applied at a specific point
in the boot process and may not include the firmware (such
as BIOS or UEFI).

Definition 2 (Trusted boot) :
A system boot, where aspects of the hardware and firmware

are measured and compared to known good values to verify
their integrity and thus their trustworthiness. The trusted boot
prevents rootkit malwares to stay unnoticed. Unlike secure
boot, that only focus on hardware and provides a static root of
trust for measurement, trusted boot provides a dynamic root
of trust for measurement. In the DRTM the trust anchor is not
a static value, but rather a constantly evolving and verifiable
reference point that is used to establish trust in the system. If
any of the measured values do not match, the boot process is
halted and the user is alerted.

Definition 3 (Trusted platform module) :
2



It is a hardware component that provides security-related
functions, such as secure boot and storage of cryptographic
keys, passwords, and digital certificates. Trusted platform
modules are used to enhance the security of a system by
providing a hardware-based root of trust.

More specifically for our project, Intel TXT uses the TPM
to compute hash of the measurement and to store it.

Definition 4 (Measuring Launch Environment) :
The measuring launch environment (MLE) will generally

consist of three main sections of code: the initialization, the
dispatch routine, and the shutdown. The initialization code
includes code to setup the MLE on the ILP and join code
to initialize the RLPs. After the initialization the MLE will
behave as an unmeasured code. MLE prepares for shutdown
by again synchronizing the processors, clearing any state, and
executing the GETSEC[SEXIT] instruction.

The launching of the measuring launch environment of a
computing system is the process of examining the system’s
firmware and configuration data to verify the authenticity and
integrity of the system at launch. This process is typically
used to establish a root of trust at launch and ensure that the
system is running in a known good state.

Launch measurement involves generating cryptographi-
cally signed hashes of the system’s firmware and configura-
tion data, which are known as launch measurements. These
launch measurements can then be verified against a trusted ref-
erence to ensure their authenticity and integrity. If the launch
measurements are found to be valid, it can be assumed that
the system’s firmware and configuration are authentic and
have not been tampered with.

Definition 5 (Authenticated Code Module) :
The ACM creates the hash of the measurement and store

it into the trusted platform module, which serve to verify the
integrity of the trusted execution environment (TEE) and the
software running within it. By ensuring that only trusted code
is permitted to run within the TEE, the authenticated code
module helps to protect against malicious software attacks and
contributes to the overall security of the system. Typically, the
authenticated code module is implemented as a small piece
of code stored in a secure location on the processor, where
it verifies the integrity of the trusted environment’s software
and hardware components. There is two type of authenticated
code modules used in Intel TXT (BIOS ACM and SINIT
ACM).

Figure 2: Boot of our system

3.2 Problem Statement
The goal of this research is to explore the use of Intel trusted
execution technology [2] for implementing a trusted boot in
the context of the TYCHE project. Specifically, we aim to
answer the following questions: (1) How can we utilize Intel
trusted execution technology to establish a trusted boot pro-
cess? (2) How does the trusted boot process work using this
technology? (3) What are the requirements for implement-
ing a trusted boot using Intel trusted execution technology
in our project? (4) How can we incorporate the use of Intel
trusted execution technology for a trusted boot in the TYCHE
project?

4 TRUSTED BOOT OF TYCHE
4.1 Our system boot
It is important to have a thorough understanding of the boot
process of our system and the desired measurements. The boot
process can be divided into four parts: BIOS, bootloader, stage
1, and stage 2 (Our boot is represented in Figure 2). Stage 1 is
focused on properly configuring the CPU and launching the
measured launch environment. Stage 2 follows stage 1 and is
a defined code with a known location in memory (including
the start and end points). In the context of trusted boot, stage
2 is the part of the boot process that we want to measure.

Currently, we are emulating our system on QEMU because
it is too time-consuming to boot and debug on a real machine.
It’s worth mentioning that this emulation has caused some
issues in implementing a trusted boot using Intel technology.

4.2 Intel documentation
In order to better understand how Intel trusted execution tech-
nology works we need to go through its documentation. From
the first reading, we can spot that the launch of an Intel mea-
suring launch environment is mandatory. Intel TXT enable
us to trust our system using two concepts: The static chain
of trust that measures the platform configuration, and the
dynamic chain of trust that measures the system software,
software configuration, and software policies. Our goal here
is to implement a trusted boot to create a DRTM. As stated
before the part we want to measure is stage 2 so the complex
initialization code from stage 1 will not be part of this mea-
surement. We will introduce in more details all the actors that

3



enable us to create such thing, the MLE, the ACM, the SMX
instruction that will start the measurement. We will then see
how these actors work together.

4.2.1 Measuring Launch Environment.
The measuring launch environment measure and sets up as-

pects of various hardware parts of our system: BIOS, chipset,
processor, and the trusted platform module. At the beginning
of our project it was then mandatory to add a TPM to the
machine emulator. The trusted platform module role is to
encrypt and store the measurement of our boot. Our oper-
ating system needs to communicate with the TPM in order
to encrypt the measurement (thanks to hash functions) and
store it. This stored hash will enable us to make a comparison
with subsequent boot measurements. To begin the measuring
process and store the measurements in the trusted platform
module in a way that prevents software spoofing, it requires
hardware such as specific chipset registers (PCRs).

Intel TXT measurement process begins with hardware,
more specifically a microcode designed into the Intel proces-
sor. All parts of the firmware and hardware in their current
state, can be seen after, the measurement, as a dynamic root
of trust until the next boot of our machine.

4.2.2 Authenticated Code Module.
The authenticated code modules that are supported by Intel

TXT are micro-code, signed by Intel. A platform aiming
to use Intel TXT should use two different ACMs : the BIOS
ACM and the SINIT ACM. The first one must be present in the
boot flash, and referenced by FIT (Intel firmware interference
table). The FIT allows to run code before the actual IA32
reset vector is executed by the CPU. It resides in the BIOS
region. BIOS authenticated code is also known as STARTUP
ACM. This AC module is used for performing subordinate
tasks such as TXT Opt-in preparation, clearing the memory,
alias checking, etc.

The AC module that will be more important in the im-
plementation of our trusted boot is the second one, SINIT
Authenticated Code module. This AC module is loaded into
the internal RAM (referred to as authenticated code execu-
tion area or ACEA) within the processor, execution of the
module therefore does not rely on or access any data stored
in external memory or any activities that may be occurring
on the external processor bus.We say that it is executed in
isolation, which is key to enforce security of our system. The
module is able to run independently, without being affected
by or interacting with these external factors.

For this module to be executed it should firstly be authenti-
cated. To authenticate the AC module, a digital signature is
included in its header. The processor then calculates a hash of
the AC module and compares it to the signature to determine
if the AC module is valid. If the calculated hash matches
the signature, the AC module is authenticated. Since we are

Figure 3: GETSEC leaf functions

using SMX instruction this authentication is necessary for the
processor to execute this micro-code. This authenticated code
module is a crucial part for the establishment of the dynamic
root of trust.

4.2.3 SMX instructions.
In order to launch the MLE and securely store and protect

measurements from external parties, our platform must use
safer mode extensions (SMX). The SMX interface includes
multiple functions that support these goals, such as a mea-
sured launch of the MLE, mechanisms for protecting and
securely storing measurements, and protection mechanisms
that allow the MLE to control attempts to modify itself. Safer
mode extension comes with numerous instructions to make
our system or enclaves secure. The one instruction that en-
able us to launch the measurement of the measured launch
environment is GETSEC.

The GETSEC instruction takes an immediate value as an
operand, which specifies the particular operation to be per-
formed, we call them GETSEC leaves. These leaves functions
are selected by the value in EAX register at the time GET-
SEC is executed. Figure 3 [6]shows all the different GETSEC
leaves and their EAX corresponding values. A GETSEC leaf
can only be used if it is shown to be available as reported by
the GETSEC[CAPABILITIES] function. If the leaf function
is not available it will throw an undefined opcode exception.

The one leaf function we are focusing on is GETSEC SEN-
TER. This is the instruction enabling us to launch the MLE
(through the authenticated code module). To execute the SEN-
TER leaf of GETSEC, the value 4 is set in the EAX register.
The base address of the AC module to be loaded and authenti-
cated is stored in the EBX register, and the size of the module
in bytes is stored in the ECX register. The EDX register con-
trols the level of functionality supported by the measured
environment launch. If we want to enable full functionality
for the protected environment launch, we must set the value
of EDX to zero. SENTER leaf will load and authenticate the
authenticated code module required by the measured environ-
ment, and enter authenticated code execution mode, verify
and lock certain system configuration parameters. It will then
measure the dynamic root of trust and store into the PCRs

4



Figure 4: Launch of the measurement

in TPM and will transfer control to the MLE with interrupts
disabled. Since the software part that we want to measure
(the MLE) is Stage 2, GETSEC[SENTER] will jump into this
stage after the execution of the Authenticated code module.

4.2.4 Launching the measurement.
After the more detailed presentation of actors of the mea-

surement we can start to draw a high level view of the launch-
ing of such a measurement, depicted in Figure 4. The GET-
SEC[SENTER] instruction is used to initiate the measurement
of code being executed and to establish a chain of trust for the
code. When this instruction is executed, it sends messages to
the chipset. The processor that initiates this process is called
the initiating logical processor (ILP), it must be the system
bootstrap processor (BSP), it is identified by setting the BSP
flag in the IA32_APIC_BASE MSR to 1 (bit 8).

The ILP loads, authenticates, and executes the AC (authen-
ticated code) module. The AC module checks the configu-
ration of the chipset and processors to ensure that it meets
certain standards, and then launches the measuring launch
environment (MLE). The MLE initialization routine finishes
configuring the system, including redirecting certain types
of interrupts. At this point, all processors and the chipset are
properly configured.

5 IMPLEMENTATION
Now that we have a clearer view on how the measuring launch
environment works in Intel Trusted execution Technology, we
want to implement it on our system. To be able to test and
directly see this implementation we are, as a first step, emu-
lating it on QEMU. We started by adding a trusted platform
module to our platform, without it no MLE can be launch. We
made sure that the rest of our platform enables the version of
the added TPM.

5.1 GETSEC emulation
In our project, we encountered a problem with the SMX
instructions, specifically the GETSEC one, which was not
supported by QEMU. We therefore were not able to run GET-
SEC[SENTER] and start the measurement of our operating

system software. We thus needed to try to emulate GETSEC.
As a result, we decided to focus on emulating the SENTER
and CAPABILITIES leafs, which seemed most important for
our goals. We were able to successfully emulate the CAPA-
BILITIES leaf, but encountered difficulties when attempting
to create a simplified version of the SENTER leaf. Our goal
in this simplified version was to catch errors, verify that the
necessary conditions were met, and then jump to the authenti-
cated code module that will proceed to stage 2.

To do so, in the way that imitates the most the true instruc-
tion we try to zoom in inside GETSEC SENTER and the
SMX instructions in general.

5.2 Memory
5.2.1 SMX interactions with the platform.

To enhance the interaction between SMX and our platform
intel TXT implements configurations registers[3], they are a
subset of the chipset registers. Those registers are mapped
into two different memory regions. The two regions separate
the public and private configuration spaces, the private one
can only be accessed after a measured environment has been
established. Each regions come with its own permissions for a
given registers (i.e. some registers can be read only on private
mode). The registers are defined as 64 bits.

Two of this registers are useful for our simplified version
of GETSEC:

• TXT.HEAP.BASE – TXT heap base address, contains
the physical base address of the Intel TXT heap memory
region. The BIOS initializes this register.

• TXT.SINIT.BASE – SINIT base address, the physical
base address of the memory region allocated by the
BIOS for loading an SINIT AC module is stored at
this location. If the BIOS has provided an SINIT AC
module, it can be found at this address. System software
that includes an SINIT AC module must place it at this
location.

After the AC Module authentication has completed success-
fully, the private configuration space of the Intel TXT-capable
chipset is unlocked. At this point, only the authenticated code
module or system software executing in authenticated code
execution mode is allowed to gain access to the restricted
chipset state for the purpose of securing the platform.

5.2.2 TXT Heap memory.
One of the components of Intel TXT is a special heap mem-

ory area that is used to store sensitive data and code. It is
a region of physically contiguous memory that is set aside
by BIOS.This heap memory is isolated from the rest of the
system’s memory and can only be accessed by code that has
been authenticated and authorized to do so, in our case the

5



authenticated code module. The system software is respon-
sible for filling in the table contents prior to executing the
SENTER instruction. It passes data between the AC module
and the MLE.

The part of heap memory that will be interesting for our
simplified version of GETSEC is the part where the system
software data passed to the SINIT AC module (OSSinitData).
This part partly contains format and physical base address of
the launch control policy (LCP), PMRs (protected memory
regions). And more importantly for our emulation information
about the MLE, such as: physical address of MLE page table
(the MLE page directory pointer table address), size in bytes
of the MLE image, linear address of MLE header (linear
address within the MLE page tables).

As stated before the heap region of Intel TXT is only ac-
cessible by AC module or authenticated code. OSSinitData
is where the ACM will take the necessary information to be
able to know where to start the measurement and where to
jump to execute the trusted OS.

5.3 Header

The previous registers only give us the address of the header
of the AC module and MLE, but we need to know the entry
point of those components to be able to execute them.

5.3.1 ACM Header.
An authenticated code module (AC module) is required to

conform to a specific format. Every ACM has a fixed size
header [4], it contains critical information necessary for the
processor to properly authenticate the entire module, includ-
ing the encrypted signature and RSA-based public key. The
processor also uses other fields of the AC module for initial-
izing the remaining processor state after authentication.

5.3.2 MLE Header.
SINIT AC module uses the MLE Header structure to set

up the correct initial MLE state and to find the MLE entry
point. The header is part of the MLE hash. The structure of
this header is shown in Figure 5 [1]

5.4 Limitations
Seeing all the underlying layers and adds into the memory
(adding a fake ACM, implementing fake registers...) needed
to perform even our simpler version of the GETSEC SEN-
TER leaf, we decided to save our tears, and our sanity. Our
emulation of the measuring launch environment in QEMU
performs validity checks to report errors that would arise on
a real CPU and ease development. This more detailed version
of the measurement is pictured in Figure 6

Figure 5: MLE Header structure

5.5 Remaining questions
One of the questions addressed in this paper is the lack of
information or literature on the implementation of Intel TXT
trusted boot on QEMU. The paper provides an explanation
for this gap in the available resources on the topic. It is simply
too complex to be something common. There is, however,
still some questions awaiting for an answer.

We did not went too deep in the interaction between the
platform and the trusted platform module. We know these
interactions happen between a dynamic root of trust and the
TPM. Without the establishment of such a root of trust no
information can be exchanged. We also know that the sets
of interface registers accessible within a TPM device are
grouped by a locality attribute. They each corresponds to a
separate set of address ranges from the Intel TXT public and
private spaces. For example there is:

• Locality 0 : Non-trusted and legacy TPM operation
• Locality 1 : An environment for use by the trusted

operating system
• Locality 2 : MLE access
• Locality 3 : Authenticated code module
• Locality 4 : Intel TXT hardware use only

We need to understand how or with which instruction we can
exchange information with the trusted platform module.

We can also try to critic the implementation of the measur-
ing launch environment in Intel TXT. Even if the implemen-
tation seems to be meeting the security and trustworthiness
expectations, why does it need to be this complex. Why the
AC Module needs to be in a RAM "very secure" area and not
inside the ROM. Since ROM can be considered somewhat
isolated. It is not directly accessible by a computer’s user or
CPU and cannot be easily modified. It certainly have to be
because it cannot be easily modified. A good point of the
SINIT ACM is that it can be loaded from the internet (Intel

6



Figure 6: GETSEC[SENTER] emulation on QEMU

offers a platform [5] to download ACM depending on the plat-
form configuration) and thus can fit to different configuration
without having to replace the chipset.

Our project progress was hindered due to the absence of
enabled SMX instructions in QEMU. A question that still re-
mains is how SMX instructions could be effectively integrated
into the QEMU framework. Our investigation delved into the
underlying complexities of this implementation, specifically
focusing on the GETSEC[SENTER] instruction and the var-
ious components of memory that it affects. Although our
exploration was limited to a high-level and theoretical aspect,
it would be intriguing to delve further and implement the
different types of memory and their interactions within the
framework of Intel TXT.

6 CONCLUSION
In conclusion, our work has allowed us to gain a deeper
understanding of the measuring launch environment process
defined in Intel trusted execution technology (TXT). Through
our analysis, we identified the three main components of
this process: the SMX instruction GETSEC [SENTER], an
Authenticated Code module designed by the chipset vendor
that runs in a secure area of RAM, and the Measured Launch
Environment (MLE).

Our efforts to emulate TXT under QEMU uncovered a
number of issues that prompted us to examine the underlying
architecture in more details. We discovered that TXT intro-
duces a range of different memory spaces to enhance the
security of interactions between various components. These
insights highlight the complexity of the architecture under-
lying TXT and provide valuable guidance for organizations
seeking to utilize this technology to secure their systems.
Overall, our work demonstrates the importance of carefully

examining the measuring launch environment process in or-
der to effectively implement TXT and ensure the security of
digital office platforms.

REFERENCES
[1] Intel txt - 2.0 measured launched environment. Table 1 MLE Header

structure.
[2] Intel txt - documentation. All documentation.
[3] Intel txt - documentation. Appendix B.1 Intel® Trusted Execution

Technology Configuration Registers.
[4] Intel txt - documentation. Appendix A Intel® TXT Execution Technol-

ogy Authenticated Code Modules.
[5] Intel txt - production sinit acm download. SINIT AC Modules.
[6] Intel® 64 and ia-32 architectures software developer’s manual - 6.2.2

smx instruction summary. Table 6-2.
[7] Jonathan M. McCune Yanlin Li Ning Qu Zongwei Zhou Anupam Datta

Virgil Gligor Adrian Perrig. Trustvisor: Efficient tcb reduction and
attestation. Link.

7

http://kib.kiev.ua/x86docs/Intel/TXT/315168-010.pdf#%5B%7B%22num%22%3A485%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C141%2C543%2Cnull%5D
http://kib.kiev.ua/x86docs/Intel/TXT/315168-010.pdf#%5B%7B%22num%22%3A485%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C141%2C543%2Cnull%5D
http://kib.kiev.ua/x86docs/Intel/TXT/315168-010.pdf
http://kib.kiev.ua/x86docs/Intel/TXT/315168-010.pdf#%5B%7B%22num%22%3A825%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C139%2C602%2C0%5D
http://kib.kiev.ua/x86docs/Intel/TXT/315168-010.pdf#%5B%7B%22num%22%3A825%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C139%2C602%2C0%5D
http://kib.kiev.ua/x86docs/Intel/TXT/315168-010.pdf#%5B%7B%22num%22%3A787%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C139%2C694%2C0%5D
http://kib.kiev.ua/x86docs/Intel/TXT/315168-010.pdf#%5B%7B%22num%22%3A787%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C139%2C694%2C0%5D
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-trusted-execution-technology.html
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2d-manual.pdf#G11.450828
https://ieeexplore.ieee.org/document/5504713

	Abstract
	1 Introduction
	2 Related work
	3 Intel TXT
	3.1 Definitions
	3.2 Problem Statement

	4 Trusted boot of TYCHE
	4.1 Our system boot
	4.2 Intel documentation

	5 Implementation
	5.1 GETSEC emulation
	5.2 Memory
	5.3 Header
	5.4 Limitations
	5.5 Remaining questions

	6 Conclusion
	References

