
Semester Project Report
Verified Page Tables Manipulation

Michael PAPER
Supervised by Edouard BUGNION and Charly CASTES

June 15th, 2022

1

Contents

Contents 2

1 Introduction 3

2 Related work 3

2.1 Verified systems . 3

2.2 Verification tools . 6

2.3 Finite interfaces . 6

3 Problem statement 7

3.1 Reminders on paging . 7

3.2 The Serval design . 7

4 Contribution 8

4.1 A finite interface to manage page tables . 8

4.2 Specification . 10

4.3 Proofs . 10

5 Discussion 11

5.1 The attempt to use Prusti . 11

5.2 The limitations of Serval . 12

6 Conclusion 12

7 References 13

2

Acknowledgements

I would like to thank Edouard Bugnion for taking the time to discuss possible project topics
with me and letting me choose to work what I was most interested in. I would also like to
thank him for all our meetings where he taught me many things about the inner workings of
virtual memory.

I would like to thank Charly Castes for his responsiveness through the whole semester and for
giving me the right advices to make the project move forward.

Finally, I would like to thank all my friends who supported me while I kept blaming my
computer for not being clever enough to do what I begged him to do, even though I was
clearly the one not clever enough.

1 Introduction

Formal verification of a piece of software consists in specifying its expected behavior and to
prove that its execution will always match the specification. For anything to be provable,
some assumptions are always required, such as the correctness of the hardware for which the
software has been developed, or the correctness of the tools used to prove the correctness of the
software [21]. In general, if these assumptions are reasonable, formal verification of a software
allows its users to have a high confidence in its correctness. If some security properties are
formulated in the specification of this software, then its users can also be highly confident in
the fact that these security properties are met by the software.

Privileged low-level software, such as monitors, hypervisors and operating systems, must usu-
ally be trusted by higher-level applications for their own security. This makes them interesting
targets for formal verification.

The Data Center Systems Laboratory (DCSL) is currently working on a small privileged
software handling negotiations between a hypervisor and an operating system, removing un-
necessary access rights from the hypervisor, and allowing nested layers of trusted computing.
Because it will be the most privileged software running on the machine, its security will be
very critical, and its small code should make some parts of it amenable to formal verification.

The privileged mechanisms my project focused on was the allocation of physical memory and
its mapping to virtual memory through the page tables. The aim of this library is to become
a part of DCSL’s project.

In section 2, I will explore previous work on formal verification of software systems. In
section 3, I will explain how previous work influenced our design choices and what exactly we
ended up trying to implement. In section 4, I will explain our attempts at implementing our
design. Finally, I will conclude in section 6.

2 Related work

2.1 Verified systems

Prior work on unverified security monitors and small hypervisors mentions using formal veri-
fication to provide a stronger source of trust to their guests.

It is the case of TrustVisor [14], a hypervisor with many similarities to the project developed

3

by the DCSL in its goals of secure execution. Its authors claim in the abstract that its small
code size makes it amenable to formal verification. However, no formal verification technique
has been used for TrustVisor yet.

It is also the case of Keystone [10], a Trusted Execution Environment (TEE) implemented
as a RISC-V monitor software. Keystone enclaves are full operating systems, running run-
ning their own applications. To provide strong safety properties, the authors propose to run
the applications on top of the verified operating system seL4 [8] within those secure enclave.
Furthermore, even though the Keystone security monitor is not verified, its authors claim
that it is amenable to formal verification due to its small code size. Later, [16] wrote partial
specifications to ensure the functional correctness of Keystone, the confidentiality of its en-
claves, and the absence of undefined hardware behaviors through all executions. Using these
partial specifications, the goal was to detect the presence of bugs, not their absence. Four
bugs have been found that way, and have been fixed since. No complete formal specification
and verification of Keystone has been achieved yet.

The first formally verified uniprocessor operating system was seL4 [8]. seL4 has evolved since
its original publication, to integrate proofs of high-level security properties [19, 15] in addition
to the original proofs of functional correctness and to verify the compiled executable against
the verified source code [20]. The seL4 µ-kernel was implemented in C. A concrete specification
of the C code was written in Haskell, and an abstract specification was written in Isabelle.
The authors proved that the C code refined the concrete specification, which in turn refined
the abstract specification. The authors claim that this 2-layer specification methodology was
a significant net cost saver, yet for 8.7k lines of C and 600 lines of assembly, the proof was
made of 200k lines of Isabelle script and took 20 person-years. The functional correctness
proofs of seL4 relied at the time on the correctness of 1.2k LoC of boot and initialization, the
unverified TLB/cache flushing mechanism, and, in its original publication, the C compiler.
The high-level security proofs of seL4 were mostly derived from its abstract specification.

Another (almost) fully verified operating system is CertiKOS. Its design, uniprocessor, and
multiprocessor implementations are presented in [5], [6] and [7] respectively. CertiKOS has
roughly 10x more lines of proofs than lines of code, and it also relies on some unproven parts
of the C code. Its proofs are written in Coq using a home-made version of ClightGen (called
ClightGenX). I will present ClightGen in subsection 2.2.

Small pluggable pieces of systems have also been the targets of formal verification. For in-
stance, Ipanema [11] is a Domain Specific Language (DSL) aimed at developing scheduling
policies for Linux. Given a policy written in the DSL, the framework produces two outputs: a
Linux scheduler module, and a WhyML code corresponding to the policy. The authors man-
aged to implement work-conserving schedulers and prove that they were work-conservative
with 2k lines of WhyML. FSCQ [2] is a file-system written in Haskell, proven to be crash-safe
in Coq. Its design is inspired by the design of the file-system of xv6, and it required 10x more
lines of code (including proofs). Later, some of the authors of FSCQ released GoJournal, a
crash-safe verified file-system close to FSCQ but written in Go and supporting multi-threaded
uses.

The proofs of correctness of those two systems rely on the correctness of a significant software
stack. Ipanema’s 41k lines of OCaml, the C compiler, WhyML and the Linux kernel must
all behave correctly for the proofs to hold. In the case of FSCQ, the correctness of Coq, the
Haskell runtime, and FUSE were part of the assumptions. It has been found 3 years after the
publication of FSCQ that a bug in FUSE broke the crash-safety property of FSCQ.

Verve [23] and ExpressOS [13] are uniprocessor µ-kernels with some parts proven automati-
cally. Verve’s kernel contains a specified and verified "Nucleus", but the rest of the kernel is

4

not verified. The kernel must be built with the applications that will run on it, and application
executables cannot be loaded dynamically. That way, Verve can avoid reasoning about virtual
memory. The proofs of ExpressOS only express that it encrypts all private data of applications
before sending it to the system services. This allows ExpressOS to prove its security without
proving its functional correctness.

Komodo [4] is a verified uniprocessor ARM TrustZone monitor, smaller than a µ-kernel. Some
parts of it are proven automatically, other proofs are hand-written.

Finally, the Hyperkernel [17] is a fully automatically proven x86 uniprocessor OS inspired
by the design of xv6, delegating many responsibilities to user-space like an exokernel. For
it to be automatically proven, its authors have had to design it with a finite interface. I
will get back to what that means in subsection 2.3, and I will explain in details the virtual
memory management unit of the Hyperkernel in section 4. Its verification framework is a
python program designed to prove exactly the correctness of the LLVM IR produced by the
Hyperkernel, and seems hardly portable to any other project. Its authors tried to write it
in Rust, but found that the Rust memory model was hard to formalize and imposed many
constraints that were not necessary for a single-threaded kernel. That is why they wrote the
Hyperkernel in C.

It is worth noting that several years before verifying the whole µ-kernel, one of the authors of
seL4 wrote about methods to prove the correctness of a virtual memory manager [9], and so
did an author of CertiKOS [22].

Table 1 sums up the data of the projects presented in this section.

System Lines of code Lines of proof TCB approximation

seL4 (as of [8]) 9.3k 200k Initialization, Isabelle, C compiler,
TLB/cache flushes

CertiKOS (as of [7]) 6.5k 50k more
than [6]

Initialization, ELF loader, "func-
tions such as memcpy [...] because
of a limitation arising from the
CompCert memory model"

Ipanema

41k for the
DSL, 250-350
for the sched-
ulers

2k DSL, C compiler, Linux, WhyML

FSCQ 30k including
proofs

Not specified
in [2]

Haskell compiler and runtime,
FUSE, Coq

Verve Not specified
in [23] 6k

Boogie/Z3, BoogieASM, Typed
Assembly Language (TAL)
checker, assembly, linker

ExpressOS 14.5k 0.5k Dafny, Boogie, L4, C# compiler

Komodo 875 lines of
assembly

4.4k lines of
spec, 2.7k
lines of Vale,
18.7 lines of
proof

Dafny and an assembly printer

Hyperkernel 7.6k 1k
Z3, LLVM IR compiler, initializa-
tion, glue code ("e.g., assembly for
register save and restore")

Table 1: Comparison of the formally verified systems presented in this section.

5

2.2 Verification tools

CompCert [12] is a C compiler written in OCaml and Coq, verified in Coq. It works by
translating a C program to a semantically equivalent Clight representation, then compiling
this Clight program into semantically equivalent machine code (after many translations into
intermediate representations). CompCert comes with ClightGen, a tool to work, inside Coq,
on the CFG of the Clight representation of a program generated by CompCert. That way,
ClightGen allows the user to write proofs on C programs which will be proven to also hold on
the binary produced by CompCert.

Prusti [1] is a framework to automatically prove properties of Rust programs. Using Rust’s
macros, a developer can state properties that should hold at a given point of the execution
(similar to assert statements), as well as functions’ pre- and post-conditions, and cross fingers
hoping that Prusti will be able to prove that all assertions hold. Prusti models some parts of
the complex memory model of Rust such as Boxes. However, all of the Rust language is not
fully supported by Prusti, proofs are done at the level of the source code, and the compilation
is not verified.

Serval [16] is a framework developed by some of the authors of the Hyperkernel. It is written
in Rosette, which is a module of the Racket programming language, which is a LISP dialect.
Rosette adds constraint-solving to the Racket programming language. A developer can write
an interpreter of a given machine code in Rosette (the authors provide such interpreters for
LLVM byte-code, eBPF, x86 and RISC-V), then compile applications to this machine code
representation using his usual toolchain (the artifacts contain examples written in C compiled
with gcc). The developer can then write a specification for this program in Rosette in the form
of constraints on the state of the Rosette interpreter. Serval will look in the debug symbols to
match the symbols mentioned in the specification with the symbols of the program. Finally,
Serval tries to verify that the constraints of the specification hold for all executions of the
program, using the optimized constraint solver of Rosette.

Serval was used to retro-fit slightly modified versions of Komodo and of the uniprocessor
implementation of CertiKOS into automatically verified RISC-V monitors, in 4 person-weeks
each. Because they were retro-fitted to RISC-V monitors, they do not include any form of
page tables manipulation, and rely only on RISC-V’s Physical Memory Protection (PMP).

2.3 Finite interfaces

The papers of Serval [16] and of the Hyperkernel [17] both define the notion of finite interfaces
as interfaces that can be implemented without unbounded loops or recursion. This is a key
notion for automating functional correctness proofs of systems with symbolic evaluation tools,
as finite interfaces allow for implementations for which symbolic evaluation will not be subject
to state explosion.

In the Hyperkernel, this definition was used to design all of the system call interface. In the
Serval paper, it has been used as a guiding principle when retro-fitting CertiKOS and Komodo.

The Hyperkernel paper gives the example of how the dup system call, which is implemented in
xv6 as specified by POSIX, was "finitized". The dup POSIX system call is non-finite, since it
requires the OS to look for the smallest unused file descriptor. A "finitized" version of the same
system call would take the old file descriptor as a first argument and the new file descriptor
as a second argument. It would delegate to the user the responsibility of finding a valid new
file descriptor, and would only check the validity of the new file descriptor and update the file
descriptor table accordingly.

6

3 Problem statement

In this section, we define the different goals that we set during my project, and why they were
kept or discarded.

Two main aspects were kept unchanged from the beginning to the end of the project: proofs
would have to be automated, and the library would be alone in charge of managing the
allocation of physical memory and the mappings from virtual addresses to physical memory
through the page tables. The main goal was to be able to prove that a page allocated by a
single user of the library was never mapped to any other user’s virtual address space.

Some automated proof tactics for Coq exist, but for now they do not perform well enough to
be considered here. For instance, CoqHammer [3] only manages to prove 25% of the proofs
of CompCert’s lemmas, which have themselves already been carefully subdivided in easier
sub-lemmas to ease proof readability and maintainability.

This ruled out using ClightGen as CertiKOS. As we have seen in section 2, there is no frame-
work for developing automatically proven concurrent low-level software as of today. Because
of Rust’s runtime guarantees, if we had managed to prove that the Rust code of the library
is correct, then there would have been no possible race conditions. For this reason, we chose
to try Prusti first. I will explain where exactly problems arose and how we switched to using
Serval.

We also considered using Prusti to specify and prove the correctness of our library. I will
explain in more details the problems we encountered with Prusti and the design we tried to
implement in subsection 5.1.

3.1 Reminders on paging

As a reminder, the mapping from virtual address to physical address performed by the hard-
ware on a typical AMD64 processor uses hierarchical page tables, as illustrated by Figure 1.
The CR3 register is set by the operating system and points to the root of the address space of
a user, a level 4 page table. A virtual address is made of 48 bits. The 9 first bits of a virtual
address represent the offset in which is written the physical address of the level 3 page table
that will be used for the rest of the translation. The rest of the translation works the same
way, using the 9 next bits of the address at every level, until 12 bits remain. At this point,
the 12 bits are not used for the translation but to index a byte in the 4096 bytes long memory
region starting at the physical address indicated by the level 1 page table entry.

Because every memory access performed by a user goes through this virtual-to-physical trans-
lation, a user can only access the memory that is in a leaf of this tree of page tables.

3.2 The Serval design

The Hyperkernel and Serval papers describe the concept of finite interfaces, which I explained
in subsection 2.3, and claim that a system must have finite interfaces to be amenable to
automated verification with symbolic evaluation. Therefore, we shaped the design of our
interface for it to be finite. This made our design very close to the one of a security monitor
or an exokernel, as it only cares about ensuring mechanisms, not any form of policy.

Through this new interface, a user can request to allocate a page that they have to specify,
and they can manipulate the page table tree that corresponds to its virtual address space.
Our library checks that allocations are legal and that mappings do not point to addresses that

7

CR3 register

32394047 08162431 15 723

..
.

..
. 4

K
 m

e
m

o
ry

 p
a
g
e

P2 entry

..
.

..
.

P2 table

..
.

..
.

P3 entry

P3 table

P1 entry

..
.

..
.

P1 table
..
.

..
.

P4 entry

P4 table
99 9 9 12

Figure 1: Page tables translate virtual addresses into physical addresses (image unmodified
from [18]).

do not belong to this user.

The next chapter explains in more details this interface, its implementation, and its specifica-
tion.

4 Contribution

4.1 A finite interface to manage page tables

To design the interface of our virtual memory manager, we looked closely at the virtual
memory manager of the Hyperkernel, which has a finite interface. According to [17], a finite
interface is an interface that allows an implementation free of unbounded loops and recursion.
For instance, the dup POSIX system call is non-finite, since it requires the OS to look for the
smallest unused file descriptor. A finitized version of the same system call would take the old
file descriptor as a first argument and the new file descriptor as a second argument. It would
delegate to the used the responsibility of finding a valid new file descriptor, and would only
check the validity of the new file descriptor and update the file descriptor table accordingly.

In the Hyperkernel, the handling of the linked list of free pages is not verified, even though it
is part of the memory allocator. The specification of the virtual memory manager states that
if some properties of the state of the virtual memory hold before any call to the Hyperkernel,
they will also hold after the call. However, there is no specification of when the calls requesting
the allocation of a page should succeed or fail. This allows the Hyperkernel to use the free
list as a hint to try to allocate a page. To the eyes of the verification framework, even if the
free list is implemented perfectly, it can not be trusted, since the it is not specified, let alone
verified. Taking the hint, the Hyperkernel will still verify that the page is indeed free and fail
otherwise, and this is sufficient for the specification to hold.

The Hyperkernel needs to use this unverified data structure inside of the verified parts because
it tries to choose a free page itself. In contrast, our approach was to let the users in charge of

8

finding free pages. This allowed us to implement a library free of unverified data structures,
and therefore a specification free of seemingly unjustified possible allocation rejections. To
help the user to choose a free page, we still provide two functions to manipulate a free list
(one to add a page number to the free list, the other to remove a page from the free list).
These functions are not specified at all with Serval.

The library maintains a fixed-size array containing the metadata of every page of the machine.
It also maintains an array of as many 4096-bytes pages representing the whole memory of the
machine. The interpretation of these pages is specified by the content of their corresponding
meta-data structure. Finally, a global array containing the top-level page table corresponding
to each user is initialized and never modified by any call to the library.

The modifications made to the page tables must all be checked not to map any page to an
address space it does not belong to. Therefore all the modifications made to the page tables
must be made through an interface defined by the library. Two types of operations can interest
a user, either add or remove an entry from a page table. To create or destroy such a mapping,
the rights of the page table and of its entry mut be checked against the caller.

To sum up, the functions of the library are the following:
1 void init_frames (void);
2 int allocate_frame (pn_t frame_number , page_type_t type , uint32_t permissions);
3 int free_frame (pn_t frame_number);
4 int map_page_table_l3_entry (pn_t l4e , uint16_t l4_offset , pn_t l3e);
5 int map_page_table_l2_entry (pn_t l3e , uint16_t l3_offset , pn_t l2e);
6 int map_page_table_l1_entry (pn_t l2e , uint16_t l2_offset , pn_t l1e);
7 int map_page_table_frame (pn_t l1e , uint16_t l1_offset , pn_t frame);
8 int unmap_page_table_entry (pn_t freepte , uint16_t l4_offset , pn_t pte_entry)
9 pn_t pick_free_frame (void);

10 void add_free_frame_to_free_list (pn_t frame_number);

As previously mentioned, the last two functions of the list are not verified.

All the verified functions perform basically the same way, performing many checks and re-
turning an error if anything went wrong, then allocating or de-allocating a resource correctly
if everything went right. As an example, here is the source code of the free_frame function.

1 int free_frame (pn_t frame_number)
2 {
3 /* You can ’t free a frame that does not exist */
4 if (frame_number >= NUMBER_OF_FRAMES)
5 return 1;
6 /* You can ’t free a frame if it’s not yours */
7 if (frames_metadata [frame_number]. owner != current)
8 return 1;
9 /* You can ’t free a frame that is still referenced by page table entries */

10 if (frames_metadata [frame_number]. refcount > 0)
11 return 1;
12 /* You can ’t free a page table has valid entries */
13 if (frames_metadata [frame_number]. type == PAGE_L4_ENTRY ||
14 frames_metadata [frame_number]. type == PAGE_L3_ENTRY ||
15 frames_metadata [frame_number]. type == PAGE_L2_ENTRY ||
16 frames_metadata [frame_number]. type == PAGE_L1_ENTRY)
17 if (frames_metadata [frame_number]. entry_count > 0)
18 return 1;
19

20 frames_metadata [frame_number]. type = PAGE_FREE ;
21 frames_metadata [frame_number]. permissions = 0;
22 frames_metadata [frame_number]. owner = 0;
23 return 0;
24 }

9

In the next section, I will explain in more details what verifications are done for the allocation
and the mapping of pages, and what properties we managed to prove using Serval.

4.2 Specification

In this section, I will explain the structures of my code and go through each functionality of
the library and explain how users are allowed to use them.

The data structure holding the metadata of a page is as follows.
1 struct frame_metadata {
2 uint64_t address ; // address of the corresponding page
3 pn_t next_free ; // next frame in the free list (if the page is free)
4 page_type_t type; // either FREE , FRAME , or PAGE_TABLE_L {1 ,2 ,3 ,4}
5 uint32_t refcount ; // number of page table entries referencing this page
6 uint32_t permissions ; // SHARED | READ | WRITE | EXEC
7 pid_t owner; // PID of the user who allocated the page
8 uint16_t entry_count ; // number of valid entries (if the page is a PT)
9 }; /* struct size: 64+64+32+32+32+16+16 = 256b = 32B */

For a user to allocate a page using allocate_frame, this page only needs to currently have
the type PAGE_FREE and the user must give any non-PAGE_FREE type to the freshly allocated
page.

For a frame to be freed by a user, it must be non-free and owned by the same user.

For a mapping of the page Y to be created at offset o of the page table X, the user must be
the owner of X, and Y must either be owned by him or be shared. Also, the offset o of X
must already be an empty entry. Finally, if X is shared, then Y must also be shared.

4.3 Proofs

All of the properties I wrote with Serval are of the form "if the invariant holds before a call
to one of the library’s functions, it also holds after the call". These properties are formulated for
the functions allocate_frame, free_frame, map_page_table_* and unmap_page_table_entry.

For the init_frames function, the specification is that, no matter if the invariant holds before
its call or not, it should hold after the call. In other words, init_frames sets the global data
structures in a coherent state. Unfortunately, the init_frames function iterates over all
the frames of the machine, and is therefore subject to state explosion during its symbolic
evaluation. As expected, reducing the number of frames of the machine makes the verification
successful quickly. Otherwise, the verification takes too long.

I list below the invariants that Serval proved to always hold, separated in three categories for
clarity.

Integrity

• Each page metadata’s address field is non-null and unique

• All free pages and top-level page tables have a refcount field set to 0.

Typechecking

• All non-empty level 4 page table entries are level 3 page tables

10

• All non-empty level 3 page table entries are level 2 page tables

• All non-empty level 2 page table entries are level 1 page tables

• All non-empty level 1 page table entries are frames

Hereditary shared attribute

• All entries of a shared page table are shared pages

• All exclusive entries entries of an exclusive page table is owned by the same user as the
page table itself.

As an example, this is what the property stating that all free pages have a refcount of 0
looks like, expressed in Racket with Serval.

1 (define-symbolic i (bitvector 64))
2 (define fm (symbol- >block ’frames_metadata))
3 (forall (list i) (=> (bvult i (bv NUMBER_OF_PAGES PAGE_NUMBER_TYPE_SIZE))
4 (=> (equal? (mblock-iload fm (list i ’type)) PAGE_FREE)
5 (equal? (mblock-iload fm (list i ’refcount)) (bv 0 32))))

The variable fm defined on line 2 uses Serval’s parsing of the debug information from the
binary to correspond to the memory block of the frames_metadata global array of the li-
brary. The function mblock-iload called in lines 4 performs a symbolic memory access to
frames_metadata, first using the index i then using the struct field type.. This call would
be translated to frames_metadata[i].type in C syntax.

The specification is made of 260 lines of Racket, while the whole library is made of 440 lines of
C. The verification takes about 17 seconds on an Intel i7-10610U with a frequency of 4.9GHz.

5 Discussion

5.1 The attempt to use Prusti

The library we wanted to create presented the abstraction of Virtual Memory Areas (VMAs)
to its user. It was made of the functions create_vma, destroy_vma and alias_vma. VMAs
are exclusive to a single user unless alias_vma is called on them. With create_vma, a user
could ask the library to be given a certain amount of memory and for it to be mapped at a
specific range of addresses in its virtual address space. With destroy_vma, a user could ask
for one of its VMAs to be removed from its address space, and the corresponding memory to
be freed. alias_vma allowed a user to ask for a VMA residing in another user’s address space
to be mapped in their address space as well, and would only succeed if that VMA had the
right permissions set when it was initialized.

Internally, the library used a global linked list of free pages, and all of the page tables. To
help proof automation, we created one type for each kind of page. A page could either be
free, a frame, or an ith level page table, for 1 ≤ i ≤ 4.

We tried to develop this library two different ways. First, we developed the Rust library
progressively trying to make Prusti accept our code at each step. What we did on this
try never escaped of the scope of the parts of the Prusti tutorial that have already been
released. Yet we ran into many issues, some regarding the Visual Studio plugin of Prusti,

11

others regarding the error reporting of Prusti. We sent those issues to the corresponding
repositories, following advices taken from the Zulip group of Prusti. The plugin has been
fixed, not the error reporting bug.

The other approach was to create the whole library, to add annotations, and only then to try to
make it comply to Prusti. That way, we found many more limitations to Prusti. Surprisingly,
some portions of unsafe code were not problematic for Prusti, but bitwise operations on
integers appeared not to be supported by Prusti. A quick fix was to implement them as
arithmetic operations, or to tell Prusti to "trust" that these pieces of code behaved as the
corresponding arithmetic operations. As page table manipulation requires many bit-wise
operations to compute page tables offsets based on virtual addresses, none of these options were
completely satisfactory. Even after applying those fixes, a partially implemented version of the
library had 14 more errors, most of them caused by unsupported Rust features. Furthermore,
Prusti took more than 20 minutes to report those errors, even though they were simply
unsupported features. At this point, we decided to give up on Prusti’s promises of concurrency
and its powerful automated theorem proving capabilities, and we decided to go for Serval’s
uniprocessor symbolic evaluation approach.

5.2 The limitations of Serval

I found Serval to be a very powerful symbolic evaluation tool. However, it remains a symbolic
evaluation tool, and using it restricted out set of designs to finite interfaces. This issue
is general to symbolic evaluation tools, and not restricted to Serval. I think a more ideal
framework to reason automatically about more general systems would reason about the CFG
of the functions considered generated by ClightGen. This would allow reasoning about more
complex data structures (for instance Prusti works on the CFG of Rust programs and it
can prove properties of linked lists), and this would remove from the TCB of the proofs
the correctness of the debug information retrieved by Serval. Such an approach could take
advantage of the properties of the Clight CFG to avoid using a full-fledged general Coq theorem
prover like CoqHammer and use a more adapted automated theorem prover, like Prusti does.
Unlike Prusti, as this approach would work with CompCert, no part of the compiler would be
in the TCB of the proofs.

Another issue with Serval is that it is still in its early stages of development, and it lacks
a complete documentation. The address field of struct frame_metadata is not neces-
sary for the implementation of the C functions. It was needed to reason with Serval about
&pages[i]. A good candidate Serval function that might have removed the need for this field
is mblock-resolve, which is defined in the file serval/lib/memory/mblock.rkt of Serval,
and seems to return the address of a memory block. Because Serval lacks a proper documen-
tation, I was not able to understand its usage. It is worth noting however that both Racket
and Rosette are both heavily documented.

6 Conclusion

At the beginning of this project, I have looked at many approaches taken by previous research
projects trying to verify the functional correctness of systems formally. I found two approaches
that seemed to be a fit with the system we wanted to develop: Prusti and Serval.

We designed reasonable interfaces that seemed to be coherent with the respective verification
frameworks considered with regard to the algorithms they implied on their implementations.
We did not manage to get a working version of the Prusti prototype, but we managed to finish

12

a proof of concept with Serval.

Using Serval, we were able to prove high-level invariants on the global data structures managed
by the library. The library is still very rudimentary, and it still has several limitations. For
instance, it only allows pages to be exclusive to their owner or to be shared with all of the other
users. This certainly needs to be improved in order to allow the nested levels of confidential
computing that the project being developed by the DCSL tries to enforce.

Possible extensions to this project could try to batch calls to the library in order to reduce
the number of privilege-transitions done to, for instance, allocate a large number of pages.

7 References

[1] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. Leverag-
ing rust types for modular specification and verification. Proc. ACM Program. Lang.,
3(OOPSLA), oct 2019.

[2] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and
Nickolai Zeldovich. Using crash hoare logic for certifying the fscq file system. In Pro-
ceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15, page 18–37,
New York, NY, USA, 2015. Association for Computing Machinery.

[3] Łukasz Czajka. Practical proof search for coq by type inhabitation. In Automated Rea-
soning: 10th International Joint Conference, IJCAR 2020, Paris, France, July 1–4, 2020,
Proceedings, Part II, page 28–57, Berlin, Heidelberg, 2020. Springer-Verlag.

[4] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. Komodo:
Using verification to disentangle secure-enclave hardware from software. In Proceedings
of the 26th Symposium on Operating Systems Principles, SOSP ’17, page 287–305, New
York, NY, USA, 2017. Association for Computing Machinery.

[5] Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David Costanzo. Certikos:
a certified kernel for secure cloud computing. In APSys, 2011.

[6] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman)
Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep specifications and certified
abstraction layers. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’15, page 595–608, New York,
NY, USA, 2015. Association for Computing Machinery.

[7] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm
Sjöberg, and David Costanzo. CertiKOS: An extensible architecture for building certified
concurrent OS kernels. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 653–669, Savannah, GA, November 2016. USENIX
Association.

[8] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. Sel4: Formal verification of an os kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
SOSP ’09, page 207–220, New York, NY, USA, 2009. Association for Computing Machin-
ery.

[9] Gerwin Klein and Harvey Tuch. Towards verified virtual memory in l4. 2004.

13

[10] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song. Key-
stone: An open framework for architecting trusted execution environments. In Proceedings
of the Fifteenth European Conference on Computer Systems, EuroSys ’20, New York, NY,
USA, 2020. Association for Computing Machinery.

[11] Baptiste Lepers, Redha Gouicem, Damien Carver, Jean-Pierre Lozi, Nicolas Palix, Maria-
Virginia Aponte, Willy Zwaenepoel, Julien Sopena, Julia Lawall, and Gilles Muller. Prov-
able multicore schedulers with ipanema: Application to work conservation. In Proceedings
of the Fifteenth European Conference on Computer Systems, EuroSys ’20, New York, NY,
USA, 2020. Association for Computing Machinery.

[12] Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

[13] Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge King, and Parthasarathy Mad-
husudan. Verifying security invariants in expressos. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’13, page 293–304, New York, NY, USA, 2013. Association for
Computing Machinery.

[14] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil Gligor,
and Adrian Perrig. Trustvisor: Efficient tcb reduction and attestation. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy, SP ’10, page 143–158, USA, 2010.
IEEE Computer Society.

[15] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke, Sean
Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. sel4: From general purpose to a proof
of information flow enforcement. In 2013 IEEE Symposium on Security and Privacy, pages
415–429, 2013.

[16] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and
Xi Wang. Scaling symbolic evaluation for automated verification of systems code with ser-
val. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP
’19, page 225–242, New York, NY, USA, 2019. Association for Computing Machinery.

[17] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Bornholt,
Emina Torlak, and Xi Wang. Hyperkernel: Push-button verification of an os kernel. In
Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17, page
252–269, New York, NY, USA, 2017. Association for Computing Machinery.

[18] Philipp Oppermann. Writing an OS in Rust (First Edition). https://os.phil-opp.
com/edition-1/, 2022.

[19] Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June Andronick, and
Gerwin Klein. Sel4 enforces integrity. In Proceedings of the Second International Con-
ference on Interactive Theorem Proving, ITP’11, page 325–340, Berlin, Heidelberg, 2011.
Springer-Verlag.

[20] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. Translation valida-
tion for a verified os kernel. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, page 471–482, New York,
NY, USA, 2013. Association for Computing Machinery.

[21] Ken Thompson. Reflections on trusting trust. Commun. ACM, 27(8):761–763, aug 1984.

14

https://os.phil-opp.com/edition-1/
https://os.phil-opp.com/edition-1/

[22] Alexander Vaynberg and Zhong Shao. Compositional verification of a baby virtual mem-
ory manager. In CPP, 2012.

[23] Jean Yang and Chris Hawblitzel. Safe to the last instruction: Automated verification of
a type-safe operating system. In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’10, page 99–110, New York,
NY, USA, 2010. Association for Computing Machinery.

15

	Contents
	Introduction
	Related work
	Verified systems
	Verification tools
	Finite interfaces

	Problem statement
	Reminders on paging
	The Serval design

	Contribution
	A finite interface to manage page tables
	Specification
	Proofs

	Discussion
	The attempt to use Prusti
	The limitations of Serval

	Conclusion
	References

