
Kicking the Firmware Out of the TCB with the Miralis

Virtual Firmware Monitor

Charly Castes
EPFL, Switzerland

Neelu S. Kalani
EPFL, Switzerland

Sofia Saltovskaia
EPFL, Switzerland

Noé Terrier
EPFL, Switzerland

Abel Vexina Wilkinson
EPFL, Switzerland

Edouard Bugnion
EPFL, Switzerland

Abstract

The role of firmware has evolved over the past decades. Not
only is firmware responsible for discovering, initializing,
and monitoring the system’s chipset, board, and devices,
but it also acts as the root of trust and plays a leading role
in confidential computing. Yet vulnerabilities in the non-
security critical part of the firmware have repeatedly led to
the compromise of the core TCB of the system.
We propose an alternative architecture that excludes the

non-security critical part of the firmware from the TCB by
isolating it within a virtual machine with the introduction
of a simple and verifiable virtual firmware monitor.

We present the design of Miralis, the first virtual firmware
monitor.Miralis can successfully boot Linux with a virtu-
alized OpenSBI on RISC-V. We demonstrate through con-
struction that the M-mode of RISC-V architecture meets the
Popek & Golberg criteria for classical virtualization. Our ini-
tial evaluation shows thatMiralis removes vendor-provided,
platform-specific firmware from the TCBwith nomeasurable
impact on boot and run-time performance.
ACM Reference Format:

Charly Castes, Neelu S. Kalani, Sofia Saltovskaia, Noé Terrier, Abel
VexinaWilkinson, and Edouard Bugnion. 2024. Kicking the Firmware
Out of the TCB with the Miralis Virtual Firmware Monitor. In 2nd
Workshop on Kernel Isolation, Safety and Verification (KISV ’24),
November 4–6, 2024, Austin, TX, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3698576.3698764

1 Introduction

In a computer system, the firmware (e.g.,BIOS, UEFI, OpenSBI,
etc.) is a low-level software running at the highest privilege
level on the machine, such as ARM’s EL3, x86_64’s SMM, or
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
KISV ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1301-9/24/11. . . $15.00
https://doi.org/10.1145/3698576.3698764

Firmware
OS
App

Miralis

FirmwareApp
OS

M-mode
S-mode
U-mode

Existing systems Deprivileged firmware

Security monitor Proprietary firmware

Figure 1. Comparison between existing systems, with col-
located security monitor and firmware, and our proposed
design with deprivileged firmware.

RISC-V’sM-mode. Historically, the firmware’s role was to
initialize the hardware at boot time and provide management
services at run time. Specifically, the firmware initializes and
interfaces with the board or SoC-specific devices, sensors,
power controllers, etc. Thus, firmware closely interfaces with
proprietary intellectual property and is often distributed as
opaque binary blobs rather than an open-source software.
For instance, developing firmware for Intel processors re-
quires signing an NDA [2].

With the growing popularity of confidential computing [9,
21, 24, 25, 27, 29], the firmware plays an additional security-
critical role in enforcing strict isolation policies to protect
trusted execution environments (TEEs). The firmware has
thus become a crucial part of the run-time TCB of the system.
Unfortunately, these two roles of modern firmware

are in tension with each other. Enforcing isolation re-
quires transparency, minimal code footprint, and correctness
guarantees. On the other hand, initializing and managing
vendor-specific hardware often leads to the firmware being
shipped as an opaque binary blob comprising of large dri-
vers, a large codebase, and a complex upgrade cycle. This
has resulted in an unwelcome and significant increase in the
size of the TCB and most of it is not security critical code.
As with any other complex software, firmware is also

a source of recurring, exploitable vulnerabilities that can
compromise the security of the entire system [3, 4, 6, 8, 13,
31, 34, 37]. The consequences of these vulnerabilities in the
firmware include enabling secure boot bypass, system com-
promise due to continued use of leaked keys in outdated
firmware hindered by complex firmware update processes,
vulnerabilities that lead to leaking of secret keys, etc.

1

https://doi.org/10.1145/3698576.3698764
https://doi.org/10.1145/3698576.3698764

KISV ’24, November 4–6, 2024, Austin, TX, USA C.Castes, et al.

Although firmware has become the most crucial software
component of the TCB, little care has been taken to ad-
dress the fact that a large part of the firmware is not se-
curity critical, and yet increases the attack surface signif-
icantly. This is a direct consequence of clinging on to the
way firmware is architected traditionally, despite the evo-
lution of the firmware’s responsibilities. Security critical
code is either added as part of existing firmware, such as
OpenSBI and TrustedFirmware-A (TF-A) [27, 29], or executes
at a lower privilege level [16]. In both cases the security-

critical code is co-located with, or controlled by the

hardware-management code, as depicted in Figure 1.
The problem of conflating distinct concerns within a single

software component is a recurring issue in system design. It
now also applies to firmware. The solution requires refactor-
ing the software into components with enforced modularity
and interfaces. For example, micro-kernels are now widely
recognized for providing stronger security guarantees and
used in the most security critical systems [22, 26, 30]. Sim-
ilarly, hypervisors have undergone a transformation with
the shift from type I [12, 39] to type II, the move toward
user-space VMMs [7, 14, 20], and attempts to partition hy-
pervisors even further [19, 28].
In this paper, we argue that firmware should undergo a

similar transformation to keep up with the security standard
expected from the confidential computing infrastructure.
Rewriting existing firmware would incur a massive engi-
neering effort and cost to adapt multiple layers of the stack.
We instead propose a backward-compatible solution based
on virtualization.

We remark that under some circumstances virtualization
can be implemented efficiently and with a low complexity
provided that the architecture meets the formal requirements
from Popek & Goldberg (§3). We further observe that a com-
plete virtualization of the architecture is not necessary if the
only purpose is to virtualize firmware designed to run at
the highest privilege level. We introduce the notion of vir-
tual firmware monitors capable of running firmware within
a virtual machine, with a strong implication on the threat
model (§4). We leverage this observation to implementMi-
ralis, a Rust-based RISC-V virtual firmware monitor that ex-
poses a virtualM-mode (§5). We aim to prove the functional
correctness of Miralis through a lightweight verification
framework that compares symbolically our implementation
with the RISC-V executable specification (§6). Finally, we
evaluate a practical use-case by deploying Miralis on a Vi-
sionFive2 RISC-V board, running unmodified, sandboxed
firmware images with minimal overhead (§7).

2 Motivation

Firmware is the software root of trust of the system. Yet
firmware is not immune from bugs and is a very compelling

TF-RMM
TF-A

Host OS
CVM 1 CVM 2

EL3
EL2
EL1
EL0

Realm World Normal World

UntrustedTrustedTCB of CVM1:

Figure 2. TCB of a confidential VM (CVM 1) with ARMCCA.
CCA relies on a security monitor (TF-RMM) to isolate CVMs
from each other, and on the firmware (TF-A) to isolate the
Realm world from the host OS.

target for either malicious hardware vendors or attackers
potentially with stolen keys [3, 4, 6, 8, 13, 31, 34, 37].

Trust in computer systems is derived from a series of mea-
surements (cryptographic hashes) of successive software
stages in the boot process. For instance, in a static root of
trust process, each component verifies that the next soft-
ware to execute in the boot process is a known valid and
authorized version. Any malicious or exploitable software in
the boot chain can bypass the verification of the next stages
and ultimately compromise the system. Even with a dynamic
root of trust measurement, part of the boot chain is verified
via a static root of trust, and thus the firmware stays in the
TCB [10].

Not only is firmware part of the root of trust chain, but it
is also actively relied upon for providing the security guar-
antees of confidential computing. For the sake of example
consider ARM CCA, depicted in Figure 2. Both research
and industry emphasise the security properties of the EL2
software (TF-RMM), which is responsible for partitioning
confidential memory among confidential VMs. Indeed, TF-
RMM has undergone a thorough verification effort [29]. Yet,
it is the EL3 firmware that is responsible for marking mem-
ory pages as confidential. While the example in Figure 2 is
specific to CCA, TDX [24] and CoVE [36] follow a similar
design and suffer from a similar TCB footprint.

Unfortunately, firmware has bugs, which can give attack-
ers complete control over the system. Firmware is a complex
software: it is responsible for the initialization, configuration,
and monitoring of the system’s chipset, board, and devices,
and exposes a non-trivial interface to OSes and hypervisors;
and it is responsible to provide security guarantees of confi-
dential computing. The EDK II repository, an open-source
UEFI SDK, has more than 1.6 million lines of code as of the
May 2024 release [1] and more than 25 CVEs have already
been registered so far. On ARM the EL3 interface specifica-
tion is scattered across more than 9 documents (PSCI, SDEI,
TrustZone, RMM, Management Mode, and more) and the
interface is only expected to increase over time to provide
backward compatibility.

2

Kicking the Firmware Out of the TCB with Miralis KISV ’24, November 4–6, 2024, Austin, TX, USA

Besides, firmware is a compelling target for malicious ac-
tors that either have access to the signing key or can carry
out a supply chain attack, as compromising the firmware
provides complete control of the system. The firmware up-
date process requires the use of the vendor’s private key to
sign the firmware image. Unfortunately, even signed images
cannot always be trusted. There are cases of attacks using
a stolen key [3], and original manufacturers can push ma-
licious updates either because they are forced to do so, or
because of a compromised supply chain. Indeed, firmware
relies on external libraries such as cryptography, compres-
sion, or network stack, any of which can be the target of
sophisticated threat actors like the xz library was [5].

3 Background

Virtualization is a mature and proven concept across the
industry. It offers three valuable, and yet often incompati-
ble properties: strong isolation, full backward compatibility,
and close to native performance. Those were first described
as the resource control, equivalence, and efficiency proper-
ties in Popek & Goldberg’s seminal 1974 paper on formal
virtualization requirements [35].

In their paper, Popek & Goldberg describe a sufficient cri-
terion for an instruction set architecture (ISA) to be virtual-
izable. The Popek & Goldberg’s criteria states that the ISA
is virtualizable if every sensitive instruction is a privileged
instruction. A sensitive instruction is (loosely) defined as an
instruction that either: (1) changes the configuration of the
system, or (2) depends on the configuration of the system.
For instance, the RISC-V mret instruction is sensitive as

it can transfer control across privilege levels, while add is
not sensitive as its behavior is independent of the current
privilege level and system registers (CSRs). For a precise
definition of sensitive instructions, please refer to the original
paper [35]. x86-32 is a famous example of a non-virtualizable
architecture. The popf instruction, for instance, is one of the
17 instructions that violate the criteria: it is sensitive as it
leaks the interrupt enable flag, but it is not privileged [15].
ISAs that satisfy the criteria are said to be classically vir-

tualizable, they can be virtualized through a simple and effi-
cient trap & emulate approach. ISAs that are not classically
virtualizable can still be virtualized through pure software
approaches, at the cost of greater complexity. The VMWare
VMM, for instance, circumvents the non-virtualizability of
x86-32 through selective use of dynamic binary translation [15].

4 Virtual firmware monitors

We propose a new class of systems called virtual firmware
monitors (VFMs) whose purpose is to deprivilege firmware
through virtualization. A VFM makes it possible to remove
the non-security critical part of the firmware from the TCB.
The VFM runs at the highest privilege level and its sole

U-mode
S-mode
M-mode Firmware

Host OS
App Guest OS

Host Firmware
Guest OS

App Guest FW

Hardware Hardware

OS virtualization Firmware virtualization

Virtualization boundary Hardware interface
Direct execution Trap & emulate

Figure 3. Comparison between traditional OS virtualization
and our proposed solution for firmware virtualization.

function is to enforce a security policy, not to manage hard-
ware or provide backward compatibility. While this paper
describes the basic functionalities necessary for deprivileging
firmware, we envision that VFMs can be extended to provide
additional security guarantees, such as isolating confidential
VMs from untrusted firmware similar to how hypervisors can
protect applications from an untrusted OS [17, 18, 23, 32, 40].

4.1 Firmware virtualization

Virtualization traditionally targets the OS or hypervisor priv-
ilege levels, whereas a VFM virtualizes only the highest priv-
ilege level. Because the Popek & Goldberg criteria qualify
instructions as either privileged or unprivileged, it implicitly
draws a line in the privilege hierarchy. In 1974 when the
paper was published machines usually had two privilege
levels, but modern ISAs often have three of four. Privileged
instructions are usually understood as non-user-level in-
structions. For instance, the RISC-V privileged architecture
manual covers both S-mode andM-mode. Yet the Popek &
Goldberg criteria can be interpreted with a more restricted
set of privileged instructions, such as M-mode only.
Figure 3 contrasts traditional OS virtualization from our

proposed solution for firmware virtualization. On RISC-V,
this places the virtualization boundary between S-mode and
M-mode rather than between U-mode and S-mode. An im-
portant property of the design is that the OS and hypervisor
modes are not virtualized, meaning that: (1) OS and hypervi-
sors execute at native speed, only firmware execution per-
formance is affected, and (2) the VFM implementation is
simplified because it does not need to emulate complex OS
functionalities such as virtual memory.

4.2 Threat model

The role of the VFM is to deprivilege non-security critical
firmware to remove it from the TCB. Virtualization guar-
antees that the VFM cannot be compromised even in the
presence of adversarial firmware. For instance, the Keystone
security monitor [27] could be implemented within a VFM
rather than co-located with OpenSBI to additionally pro-
tect enclaves from untrusted firmware. Finally, side-channel,
transient-execution attacks, and CPU bugs are out of scope
but can be mitigated with additional hardening.

3

KISV ’24, November 4–6, 2024, Austin, TX, USA C.Castes, et al.

Table 1. RISC-V privileged instructions
Instructions Description

ecall, ebreak Trap/call into higher privilege mode
mret, sret Return from trap
csrrw, csrrs, csrrc CSR read/write, read/set, read/clear
csrrwi, csrrsi, csrrci CSR operations with immediate
sfence.vma Memory fence
wfi Wait for interrupt

5 M-mode virtualization withMiralis

To demonstrate the concept of VFM we designed and im-
plementedMiralis, a RISC-V VFM.Miralis is anM-mode
software that exposes a virtualM-mode (vM-mode) in which
untrusted firmware can safely execute without the possi-
bility to compromiseMiralis, similar to how a hypervisor
protects itself from untrusted VMs. In the rest of this section,
we describe two key elements of the M-mode virtualization:
CPU and memory protection virtualization.

5.1 CPU virtualization

Miralis has two operationmodes: vM-mode for the firmware
and direct execution for OS and applications. Firmware exe-
cuting in vM-mode can trigger a transition to unmodified S
or U-mode using the mret instruction. Whereas, when the
OS traps into M-mode, Miralis automatically switches to
vM-mode to forward the trap to the firmware. We refer to the
switches between vM-mode and unmodified S or U-mode
as world switches. Since traps are forwarded to and handled
by the firmware,Miralis does not need to implement any
firmware functionalities (i.e., servicing SBI calls).
Execution in vM-mode is implemented as execution in

physical U-mode (see Figure 3). Running virtual firmware in
U-mode causes more traps toMiralis than S-mode would
but is required for correctness: S-mode execution has access
to sensitive instructions, such as changing the page table
root, which do not trap to M-mode and therefore violate
Popek & Goldberg’s criteria. Indeed,M-mode firmware ex-
pects to be able to change the page table root but not to be
affected by the change. However a de-privileged firmware
running in S-mode would be affected by address translation,
breaking the equivalence property RISC-V only implements
a few privileged instructions (listed in Table 1) in the core
specification, all of which can easily be emulated.
The difficulty of CPU emulation does not come from the

instructions themselves, but from the control and status reg-
isters (CSRs). The specification defines over a hundred CSRs,
each controlling or reporting about a specific aspect of the
machine, yet not all are necessarily implemented or required
by software. The current implementation of Miralis sup-
ports 49 CSRs and covers the needs of Linux, OpenSBI, and
Zephyr (see §7). CSRs are managed byMiralis as a set of vir-
tual registers that can be partitioned into two categories: the
ones that modify the runtime behavior of M-mode software,

PMP 0
PMP 1

0
vPMP 0
vPMP 1
vPMP 2
vPMP 3

All

For Miralis use

Null entry

Default allow/deny all

Virtual PMP registers

Decreasing
priority order

Figure 4. Multiplexing 8 physical PMP registers

and the ones that do not. CSRs that do not have any impact
on M-mode execution can be read or written from the virtual
CSRs directly, but accesses need to be filtered to enforce valid
bit patterns. CSRs with side-effects on M-mode execution
need special handling. For instance, the virtualmie (M-mode
interrupt enabled) needs to be reflected in the physical mie
for proper interrupt emulation. Fortunately there are only a
few such registers, Miralis has support for 6 of them.

On world switch from vM-mode to OS execution,Miralis
installs the virtual CSRs into the physical registers. All the
S-mode CSRs as well as most M-mode CSRs can be installed
directly. Some CSRs, however, need to stay under the con-
trol of Miralis. This is for instance the case of the PMP
registers, as described in §5.2. On world switch from the OS
to vM-mode the reverse operation happens:Miralis saves
the physical CSRs (potentially updated by the OS) into the
virtual registers and resumes firmware execution.

5.2 PMP virtualization

On RISC-V M-mode software does not use an MMU to man-
age and protect its own memory but relies on physical mem-
ory protection (PMP) instead. PMP virtualization does not
require shadow or two-level page tables, removing the need
for complex dynamic memory management.

PMP rules are specified with a set of up to 8 configuration
and 64 addresses registers that can each protect one contigu-
ous segment of memory. The rules are ordered by priority,
the first matching entry determines the corresponding access
rights. Memory segments can have different encodings, each
with varying alignment and granularity constraints. The Top
of Range (ToR) encoding in particular uses the previous en-
try to determine the start address of the segment, with the
special case of zero when applied to the first PMP entry.
Miralis exposes virtual PMP to the firmware by multi-

plexing the physical registers, as pictured in Figure 4. The
first (highest priority) entries are used byMiralis to protect
its own memory and, for instance, MMIO regions. The next
group of registers host the virtual PMP, with a null entry
separating them from the first group. The null entry is re-
quired to properly emulate the ToR encoding behavior with
virtual PMP. Finally, the last (lowest priority) entry is used
to emulate the default access rights: by default, M-mode has
access to all memory, while S-mode has access to none.

4

Kicking the Firmware Out of the TCB with Miralis KISV ’24, November 4–6, 2024, Austin, TX, USA

Table 2. Miralis lines of code decomposition.
LoC Percent

HW definitions & emulation 1892 55.8%
Assembly & Rust wrappers 563 16.6%
Control loop 346 10.2%
Configuration & debugging 278 8.2%
Other 313 9.2%
Total 3392 100%

6 Verifying virtual firmware monitors

The correctness of the VFM, the most privileged software on
the machine, is crucial to the security of the overall system.
Fortunately, VFMs offer unique opportunities in terms of
transparency and formal verification. First because a VFM
decouples security enforcement from proprietary hardware
management and therefore can be made open-source like
Intel’s TDX module and ARM’s TF-RMM. Second because
VFMs (and hypervisors in general) expose a well-defined
interface that is (1) formally defined, and (2) finite for the
relevant part, simplifying automated formal verification. In
the rest of this section, we describe a method for a fully
automated, push-button approach to VFM verification.
The bulk of the complexity in VFMs is concentrated in

the emulation of traps and privileged instructions. Table 2
shows lines of code repartition inMiralis, our Rust-based
VFM, as counted by cloc. Emulation and hardware definitions
constitute most of the code and can be error-prone when
manually derived from the documentation. In Miralis, this
accounts for more than 55% of the code.
We propose a method for automatic formal verification

of the correctness of privileged instructions and trap emula-
tion in VFMs by exhaustively comparing the hand-written
emulation with the specification through symbolic execu-
tion. For ISAs such as ARM and RISC-V the specifications
include a machine-readable format in addition to the English
document used by developers. RISC-V uses Sail [11] as its
machine-readable specification, from which reference emu-
lators can be automatically generated (in C or OCaml). If for
every possible instruction and register state the hand-written
implementation produces the same new register state as the
reference, then the hand-written implementation is correct.
Exhaustive checking can be efficient with symbolic execution
because the hardware interface is, by design, finite [33].
We demonstrated the feasibility of our proposed method

by verifying the implementation of the mret instruction in
Miralis and found a bug in our implementation in the pro-
cess. First, we wrote a tool to convert Sail code into equiva-
lent Rust. While Rust and Sail can be surprisingly similar on
the surface there are semantic gaps that needed to be filled.
For instance, Sail provides a bitvector primitive type that we
model as a custom type in Rust. We then used Kani [38], a
symbolic execution tool for Rust, to prove the equivalence.

We executed the mret instruction against a set of virtual reg-
isters initialized with arbitrary symbolic values using both
theMiralis implementation and the Rust code derived from
the Sail specification and obtained two equal symbolic reg-
ister states. At the time of writing our proof of concept, we
require to manually patch the reference Rust implementation
due to limitations in our Sail to Rust translator, which limits
its applicability to more complex instructions such as CSR
read and writes which generate over 2400 lines of reference
Rust code. All current limitations can be lifted with a more
robust and complete Sail to Rust translation.

7 Evaluation

Our current version of Miralis is implemented in 3392 lines
of Rust code and supports two platforms: Qemu for develop-
ment and the VisionFive2 board as a demonstrator. In the
rest of this section, we describe our experiments running
unmodified firmware and OS on top of Miralis, how we
integratedMiralis in the VisionFive2 boot process, and our
preliminary overhead analysis.

7.1 Running unmodified firmware and OS with

Miralis

We demonstrated the feasibility of running unmodified OSes
and firmware on top of a VFM by running a stock Linux
kernel and Zephyr RTOS on top of Miralis. We ran both
OSes on the Qemu virt board with a single core. Miralis
is loaded as the entry point in Qemu using the bios option
and the Linux and Zephyr images are pre-loaded in mem-
ory at known addresses. We embedded Linux directly as
an OpenSBI payload, by building both Linux and OpenSBI
with the default configuration and transferring control from
Miralis to OpenSBI.
Booting Linux demonstrates the capability of Miralis

to run an unmodified OS with virtualized firmware and
exercises the world switch between vM-mode and direct
OS execution. Zephyr is an RTOS for micro-controllers, it
runs inM-mode only but uses a richer set of features than
OpenSBI such as timers and interrupts to schedule multiple
M-mode threads. By running Zephyr seamlessly in vM-mode
we demonstrate the ability of Miralis to virtualize a wide
range of firmware and its applicability in more constrained
environments such as embedded systems.

7.2 Inserting Miralis in the VisionFive2 boot flow

We chose the VisionFive2 board as a demonstrator because
of its support for Linux and non-trivial boot flow with multi-
ple boot stages. The VisionFive2 board uses a 64 bits JH7110
RISC-V SoC with four U74 cores at 1.5 GHz and one smaller
S7 core. In its current shape our prototype does not yet sup-
port multi-core, thus we restrict our experiments to running
on a single U74 core.

5

KISV ’24, November 4–6, 2024, Austin, TX, USA C.Castes, et al.

Reset Vector U-Boot SPL OpenSBI U-Boot Linux

M-mode S-mode

Reset Vector U-Boot SPL Miralis OpenSBI U-Boot Linux

S-modeM-mode vM-mode

Resident
TransitiveStandard boot

Miralis boot

Figure 5. Boot flow

Table 3. Cost of trap & emulate and world switches on the
VisionFive2.

Instructions retired Cycles

Trap & emulate 2854 3209 ± 200
World switch to OS 3293 3736 ± 23
World switch to firmware 3079 3459 ± 35

The boot of the VisionFive2 relies on three firmware im-
ages: U-Boot SPL, U-Boot, and OpenSBI. Figure 5 depicts
the standard boot flow of the VisionFive2 board. When
powering-up the board the control is initially transferred to
the reset vector, a small program in ROM that transfers con-
trol directly to the first firmware image: U-Boot SPL. U-Boot
SPL is an M-mode software whose role is to initialize the
hardware (such as DRAM) and load the next firmware stage.
In the standard boot flow, OpenSBI is the next firmware to
run and the first firmware to stay resident in memory until
powering down. OpenSBI exposes the SBI interface to Linux
with functions such as configuring timers and controlling
power. Finally,OpenSBI loadsU-Boot as an S-mode program
which loads and jumps into Linux.

We demonstrated running an unmodified, deprivileged
firmware by modifying the boot flow to run OpenSBI in
vM-mode. Figure 5 depicts the boot flow when executing
withMiralis.Miralis replacesOpenSBI as the first resident
firmware, and only trusted M-mode firmware at runtime.
The U-Boot image on the VisionFive2 board needs to be
loaded at a specific address, but becauseMiralis does not
use virtual memory to virtualizeM-mode page tables are not
an option. Instead, we used U-Boot SPL to loadMiralis after
the OpenSBI and U-Boot image to keep the same memory
layout and remove the need for re-compiling U-Boot.
Our Miralis prototype boots unmodified OpenSBI and

U-Boot on the VisionFive2 board. It currently does not yet
support full initialization of Linux.

7.3 Overhead analysis

The overhead of Miralis comes from the extra cost of trap-
ping and emulating privileged instructions during firmware
execution, as well as increased transition cost to and from
the firmware because of world switches. We conducted an
initial evaluation of Miralis by running micro-benchmarks
to evaluate the cost of firmware traps and world switches.
We then measured the number of traps to Miralis during a

Table 4. Number of traps during Linux boot

Phase Trap &
emulate

World
switches

Total
exits

OpenSBI initialization 488 − 488
Linux boot 1252 206 1458
Total 1740 206 1946

Linux boot (where most of the traps to firmware happen) to
estimate the overall impact of Miralis.
For micro-benchmarks, we execute 1000 traps or world-

switches on the VisionFive2 board and report the number of
instructions retired and cycles as read from the performance
counters in Table 3. The number of instructions retired is
deterministic in our experiments: Miralis only uses stati-
cally allocated data structures and has no sources of non-
determinism other than interacting with UART. The cost
of trap & emulate was estimated a write to the privileged
mscratch register. The number of cycles can vary and de-
pends on the CPU, we report numbers for the VisionFive2
U74 core (in-order, dual issue). We found that the cost of trap
& emulate is low, typically between 3200 and 3800 cycles or
at most 2.5𝜇s at 1.5 GHz. Note that our micro-benchmarks
do not reflect the cost of flushing TLBs due to permission
changes in the PMP on world switches, which might impact
the overall performance.

We then measured the number of traps toMiralis during
a complete Linux boot on theQemu virt board. Table 4 shows
the number of exits for OpenSBI initialization until the first
transition to S-mode, and the world-switches and exits for
the rest of the boot (U-Boot and Linux). We measured a total
of 1946 exists, or a 4.9 milliseconds overhead on boot time
by extrapolating results from our micro-benchmarks.

8 Conclusion

Firmware is part of the TCB of all modern systems, and yet
represents a significant threat and attack vector. We intro-
duced the concept of virtual firmware monitors to remove
the firmware from the TCB without breaking backward-
compatibility through virtualization. We built Miralis, a
virtual firmware monitor for RISC-V, and demonstrated run-
ning unmodified firmware binaries in a virtualizedM-mode.

6

Kicking the Firmware Out of the TCB with Miralis KISV ’24, November 4–6, 2024, Austin, TX, USA

References

[1] Edk ii project. https://github.com/tianocore/edk2.git.
[2] Intel system bring-up toolkit. https://www.intel.com/content/www/

us/en/developer/tools/oneapi/system-bring-up-toolkit.html.
[3] Pkfail: Vulnerability in supermicro bios firmware, july 2024. https:

//www.supermicro.com/en/support/security_PKFAIL_Jul_2024.
[4] Sinkclose vulnerability affects every amd cpu dating back to

2006. https://www.techpowerup.com/325488/sinkclose-vulnerability-
affects-every-amd-cpu-dating-back-to-2006.

[5] Xz utils backdoor cve. https://nvd.nist.gov/vuln/detail/CVE-2024-
3094.

[6] Boot unguarded: x86 trust anchor downfalls to the leaked oem
internal tools and signing keys. https://hardenedlinux.org/blog/2023-
09-07-boot-unguarded-x86-trust-anchor-downfalls-to-the-leaked-
oem-internal-tools-and-signing-keys/, 2023.

[7] Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R.,
Piwonka, P., and Popa, D.-M. Firecracker: Lightweight Virtualization
for Serverless Applications. In Proceedings of the 17th Symposium on
Networked Systems Design and Implementation (NSDI) (2020), pp. 419–
434.

[8] Alcorn, P. Amd issues fix and workaround for ryzen’s ftpm stuttering
issues. https://www.tomshardware.com/news/amd-issues-fix-and-
workaround-for-ftpm-stuttering-issues, 2022.

[9] AMD. Sev-snp: Strengthening vm isolation with integrity protection
and more. White Paper, January (2020).

[10] ARM. Drtm architecture for arm.
[11] Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K. E.,

Norton, R. M., Mundkur, P., Wassell, M., French, J., Pulte, C.,
Flur, S., Stark, I., Krishnaswami, N., and Sewell, P. ISA semantics
for ARMv8-a, RISC-v, and CHERI-MIPS. Proc. ACM Program. Lang. 3,
POPL (2019), 71:1–71:31.

[12] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I., and Warfield, A. Xen and the art of
virtualization. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP) (2003), pp. 164–177.

[13] Behling, D. Bring your own backdoor: How vulnerable drivers let
hackers in. https://blogs.vmware.com/security/2023/04/bring-your-
own-backdoor-how-vulnerable-drivers-let-hackers-in.html, 2023.

[14] Bellard, F. QEMU, a Fast and Portable Dynamic Translator. InUSENIX
ATC, FREENIX Track (2005), pp. 41–46.

[15] Bugnion, E., Devine, S., Rosenblum, M., Sugerman, J., and Wang,
E. Y. Bringing Virtualization to the x86 Architecture with the Original
VMware Workstation. ACM Trans. Comput. Syst. 30, 4 (2012), 12:1–
12:51.

[16] Castes, C., and Baumann, A. Sharing is leaking: blocking transient-
execution attacks with core-gapped confidential vms. In 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 4 (ASPLOS ’24) (2024).

[17] Castes, C., Ghosn, A., Kalani, N. S., Qian, Y., Kogias, M., Payer,
M., and Bugnion, E. Creating Trust by Abolishing Hierarchies. In
Proceedings of The 19th Workshop on Hot Topics in Operating Systems
(HotOS-XIX) (2023), pp. 231–238.

[18] Chen, X., Garfinkel, T., Lewis, E. C., Subrahmanyam, P., Wald-
spurger, C. A., Boneh, D., Dwoskin, J. S., and Ports, D. R. K. Over-
shadow: a virtualization-based approach to retrofitting protection in
commodity operating systems. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XIII) (2008), pp. 2–13.

[19] Colp, P., Nanavati, M., Zhu, J., Aiello, W., Coker, G., Deegan, T.,
Loscocco, P. A., and Warfield, A. Breaking up is hard to do: security
and functionality in a commodity hypervisor. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles (SOSP) (2011),
pp. 189–202.

[20] Community, T. L. K. Linux kernel virtual machine. https://linux-
kvm.org/page/Main_Page, 2007.

[21] Ferraiuolo, A., Baumann, A., Hawblitzel, C., and Parno, B. Ko-
modo: Using verification to disentangle secure-enclave hardware from
software. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP) (2017), pp. 287–305.

[22] Hildebrand, D. An Architectural Overview of QNX. In USENIXWork-
shop on Microkernels and Other Kernel Architectures (1992), pp. 113–126.

[23] Hofmann, O. S., Kim, S., Dunn, A. M., Lee, M. Z., and Witchel,
E. InkTag: secure applications on an untrusted operating system. In
Proceedings of the 18th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XVIII)
(2013), pp. 265–278.

[24] Intel. Architecture specification: Intel trust domain extensions (in-
tel tdx) module. https://software.intel.com/content/dam/develop/
external/us/en/documents/intel-tdx-module-1eas.pdf, 2023.

[25] Intel. Intel software guard extensions (intel sgx). https:
//www.intel.com/content/www/us/en/developer/tools/software-
guard-extensions/overview.html, 2023.

[26] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D. A.,
Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish,
M., Sewell, T., Tuch, H., andWinwood, S. seL4: formal verification of
an OS kernel. In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP) (2009), pp. 207–220.

[27] Lee, D., Kohlbrenner, D., Shinde, S., Asanovic, K., and Song, D.
Keystone: an open framework for architecting trusted execution en-
vironments. In Proceedings of the 2020 EuroSys Conference (2020),
pp. 38:1–38:16.

[28] Li, S.-W., Koh, J. S., and Nieh, J. Protecting Cloud Virtual Machines
from Hypervisor and Host Operating System Exploits. In Proceedings
of the 28th USENIX Security Symposium (2019), pp. 1357–1374.

[29] Li, X., Li, X., Dall, C., Gu, R., Nieh, J., Sait, Y., and Stockwell, G.
Design and Verification of the ArmConfidential Compute Architecture.
In Proceedings of the 16th Symposium on Operating System Design and
Implementation (OSDI) (2022), pp. 465–484.

[30] Liedtke, J. On micro-Kernel Construction. In Proceedings of the
15th ACM Symposium on Operating Systems Principles (SOSP) (1995),
pp. 237–250.

[31] Lyons, J. It’s official: Blacklotus malware can bypass secure boot
on windows machines. https://www.theregister.com/2023/03/01/
blacklotus_malware_eset/, 2023.

[32] McCune, J. M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V. D., and
Perrig, A. TrustVisor: Efficient TCB Reduction and Attestation. In
IEEE Symposium on Security and Privacy (2010), pp. 143–158.

[33] Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., and
Wang, X. Scaling symbolic evaluation for automated verification of
systems code with Serval. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP) (2019), pp. 225–242.

[34] Paganini, P. Three flaws allow attackers to bypass uefi secure boot
feature. https://securityaffairs.com/134334/hacking/uefi-secure-boot-
feature-flaw.html, 2022.

[35] Popek, G. J., and Goldberg, R. P. Formal Requirements for Virtual-
izable Third Generation Architectures. Commun. ACM 17, 7 (1974),
412–421.

[36] Sahita, R., Shanbhogue, V., Bresticker, A., Khare, A., Patra, A.,
Ortiz, S., Reid, D., and Kanwal, R. CoVE: Towards Confidential
Computing on RISC-V Platforms. In Proceedings of the 20th ACM
International Conference on Computing Frontiers (CF) (2023), pp. 315–
321.

[37] Smolár, M. When "secure" isn’t secure at all: High-impact
uefi vulnerabilities discovered in lenovo consumer laptops.
https://www.welivesecurity.com/2022/04/19/when-secure-isnt-
secure-uefi-vulnerabilities-lenovo-consumer-laptops/, 2022.

[38] VanHattum, A., Schwartz-Narbonne, D., Chong, N., and Sampson,
A. Verifying Dynamic Trait Objects in Rust. In ICSE (SEIP) (2022),
pp. 321–330.

7

https://github.com/tianocore/edk2.git
https://www.intel.com/content/www/us/en/developer/tools/oneapi/system-bring-up-toolkit.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/system-bring-up-toolkit.html
https://www.supermicro.com/en/support/security_PKFAIL_Jul_2024
https://www.supermicro.com/en/support/security_PKFAIL_Jul_2024
https://www.techpowerup.com/325488/sinkclose-vulnerability-affects-every-amd-cpu-dating-back-to-2006
https://www.techpowerup.com/325488/sinkclose-vulnerability-affects-every-amd-cpu-dating-back-to-2006
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://hardenedlinux.org/blog/2023-09-07-boot-unguarded-x86-trust-anchor-downfalls-to-the-leaked-oem-internal-tools-and-signing-keys/
https://hardenedlinux.org/blog/2023-09-07-boot-unguarded-x86-trust-anchor-downfalls-to-the-leaked-oem-internal-tools-and-signing-keys/
https://hardenedlinux.org/blog/2023-09-07-boot-unguarded-x86-trust-anchor-downfalls-to-the-leaked-oem-internal-tools-and-signing-keys/
https://www.tomshardware.com/news/amd-issues-fix-and-workaround-for-ftpm-stuttering-issues
https://www.tomshardware.com/news/amd-issues-fix-and-workaround-for-ftpm-stuttering-issues
https://blogs.vmware.com/security/2023/04/bring-your-own-backdoor-how-vulnerable-drivers-let-hackers-in.html
https://blogs.vmware.com/security/2023/04/bring-your-own-backdoor-how-vulnerable-drivers-let-hackers-in.html
https://linux-kvm.org/page/Main_Page
https://linux-kvm.org/page/Main_Page
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1eas.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1eas.pdf
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.theregister.com/2023/03/01/blacklotus_malware_eset/
https://www.theregister.com/2023/03/01/blacklotus_malware_eset/
https://securityaffairs.com/134334/hacking/uefi-secure-boot-feature-flaw.html
https://securityaffairs.com/134334/hacking/uefi-secure-boot-feature-flaw.html
https://www.welivesecurity.com/2022/04/19/when-secure-isnt-secure-uefi-vulnerabilities-lenovo-consumer-laptops/
https://www.welivesecurity.com/2022/04/19/when-secure-isnt-secure-uefi-vulnerabilities-lenovo-consumer-laptops/

KISV ’24, November 4–6, 2024, Austin, TX, USA C.Castes, et al.

[39] Waldspurger, C. A. Memory Resource Management in VMware ESX
Server. In Proceedings of the 5th Symposium on Operating System Design
and Implementation (OSDI) (2002).

[40] Zhang, F., Chen, J., Chen, H., and Zang, B. CloudVisor: retrofitting
protection of virtual machines in multi-tenant cloud with nested vir-
tualization. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP) (2011), pp. 203–216.

8

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	4 Virtual firmware monitors
	4.1 Firmware virtualization
	4.2 Threat model

	5 M-mode virtualization with Miralis
	5.1 CPU virtualization
	5.2 PMP virtualization

	6 Verifying virtual firmware monitors
	7 Evaluation
	7.1 Running unmodified firmware and OS with Miralis
	7.2 Inserting Miralis in the VisionFive2 boot flow
	7.3 Overhead analysis

	8 Conclusion
	References

