
Integrating Tyche
client libraries
as a Rust-based Linux
kernel module
Bachelor semester project

Noé Terrier

E
c
o
le
P
o
ly
te
c
h
n
iq
u
e
F
é
d
é
ra
le
d
e
La
u
sa
n
n
e

Integrating Tyche
client libraries
as a Rust-based

Linux kernel module
Bachelor semester project

by

Noé Terrier
Student Name Student Number

Noé Terrier 310041

Instructor: Prof. Edouard Bugnion
Teaching Assistants: Charly Castes & Yuchen Qian
Laboratory: Data Center Systems Lab at EPFL
Date: Spring semester 2023
Faculty: School of Computer and Communication Sciences, EPFL

Cover: The Rolex Learning Center at EPFL (Modified)
Style: EPFLReport Style, withmodifications by Batuhan Faik Derinbay

Contents

1 Introduction 1

2 Rust language support in the kernel 2
2.1 Dependencies . 2
2.2 How to activate Rust support within the kernel . 2

3 Write a first module in Rust 3
3.1 Writing the module . 3
3.2 Building . 4
3.3 Limitations of the Rust support inside the Linux kernel 5

4 File operations and IOCTL 6
4.1 File operations . 6
4.2 Input / Output control (IOCTL) . 7

5 Memory allocation andmapping 9
5.1 Page allocation . 9
5.2 Memory mapping . 9

6 Using library crates inside amodule 11
6.1 Crates specifications . 11
6.2 Use a library crate inside a module . 12

7 Comparison with the C language 14

8 Conclusion 15

References 16

A Rust and C comparison programs 17

i

1
Introduction

This bachelor project is based on the development of the Tyche project: a project that aims to im-
prove confidentiality and trust inside a computer system. The following text is a description of Tyche
drawn from the paper ”Creating Trust by Abolishing Hierarchies”: [3]

We present Tyche, a prototype implementation of an isolation monitor, designed to be formally
verifiable, with a unified isolation API that allows to create, combine, and nest various isolation ab-
stractions, including sandboxes, enclaves, confidential virtual machines, and more.

One of Tyche’s features is its ability to create enclaves: memory regions that are opaque to the
kernel and in which the desired confidential and autonomous processes run. To create and man-
age these different enclaves, Tyche needs to communicate with the Linux kernel via modules (or
drivers): customized pieces of software inserted into the kernel to perform various operations (allo-
cate memory, manage hardware components, implement network protocols, etc.).
One of the main technologies used in this project is the Rust programming language [13]. This lan-
guage offers many advantages: it’s fast, memory-safe, thread-safe, greatly documented [10] and
comes with a powerful compiler catching a lot of errors and preventing a lot of crashes or memory
leaking.

In order to unify the project and to be able to use the sameRust libraries (or crates) in themonitor
and in the kernel modules, it would be interesting to know to what extent it is possible to develop
modules written in Rust for a Linux kernel originally written in C. The aim of this project is therefore
to find out about the use of Rust in the Linux kernel (v6.3.0), to see if it is possible to write a Linux
module in Rust and to compare the advantages and disadvantages with the use of C.

What we will see in the first section of this report describes how to write a module in Rust and
what are the limitations of the Rust support in the Linux Kernel. The second section explains how
to interact with a module in order to control its behaviors from user space. The fifth section is about
allocation and mapping of memory in order to create enclaves. The last implementation aspect
we’re going to go over is how to use external library crates in a Rust module to reuse the same Rust
code in many places of the project (section 6). Finally we will compare what are the advantages and
drawbacks of using Rust instead of C.

In the remainder of this report, we consider the use of Tyche as a monitor coupled with a Linux
kernel [7]. And the version of the Linux kernel will be 6.3.

1

2
Rust language support in the kernel

First of all, we need to configure the Linux kernel in order to be compatible with Rust utilisation, and
set up all the required tools to develop and build Rust programs. Rust has been supported by the
kernel since the version 6.1, released in early 2023. The idea of adding Rust support in the kernel is
to make possible Rust code addition into the kernel, to benefit from all Rust language advantages.
Rust support is available in the Linux kernel under certain conditions. Everything is detailed on the
official Linux kernel site [14] and covers the following points:

2.1. Dependencies

• The kernel depends on a specific Rust toolchain. A toolchain is the set of compiler tools used
to write and build Rust source files. They generally contain a Rust compiler such as rustc, the
dependencymanager and cargo construction tool, as well as development tools such as code
formatters and documentation generators. For example, the toolchain used for kernel v6.3.0
is the version 1.66.0.

• TheRust source code is necessary because the compilerwill cross-compile the alloc andcore
crates, which is required to use certain functions implemented in their code.

• bindgen [2] is required to generate the bindings needed to call kernel functions. These bind-
ings, generated at build time, are entry points to kernel functions that can generally be called
from a C module, but wrapped in a Rust interface so that they can be called from a Rust mod-
ule.

• ibclang [4] is used by bindgen to understand the C code in the kernel. The kernel must there-
fore be compiled with clang (or LLVM) to be compatible with bindgen.

2.2. How to activate Rust support within the kernel

In order to make Rust available in the kernel, the build option CONFIG_RUST needs to be enabled.
This will enable other options in the General setup menu and add more features for using Rust in
the kernel but which are not required in the scope of this project. Once the previous requirements
have been validated and the kernel has been built with the right compiler, you can now use Rust in
the kernel and start writing modules. Some examples of Rust modules are already present in the
kernel in the samples/rust folder.

The following section explains how to write a module in Rust and shows the limitations of Rust
support in the Linux kernel.

2

3
Write a first module in Rust

In this section we provide a simple implementation of a first Linux module written in Rust and show
the limitations of the Rust support inside the Linux kernel (v6.3).

3.1. Writing themodule

Now that Rust support is enabled, we can start writing and compiling a Rust module.
The following code is a minimal implementation of a ”Hello World!” Rust module.

1 // SPDX-License-Identifier: GPL-2.0
2

3 //! Rust out-of-tree sample
4

5 use kernel::prelude::*;
6

7 module! {
8 type: HelloWorld,
9 name: "hello_world",
10 author: "Noe Terrier",
11 description: "Rust hello_world module",
12 license: "GPL",
13 }
14

15 struct HelloWorld;
16

17 impl kernel::Module for HelloWorld {
18 fn init(_name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
19 pr_info!("Hello world! (init)\n");
20

21 Ok(HelloWorld {})
22 }
23 }
24

25 impl Drop for HelloWorld {
26 fn drop(&mut self) {
27 pr_info!("Goodbye! (exit)\n");
28 }
29 }

The structure of the code is quite similar to a C module.
There is a macro module! specifying all the attributes of the driver such as its name, the author, a
description, etc. Then there is a struct HelloWorld in which we can put data to be used everywhere
in the module. Here it is empty as we don’t need to store anything.
The following is an implementation of the kernel::Module trait for the struct HelloWorld. To be clear,
a trait in Rust is a collection of functions defined for an unknown data type. These functions may al-
ready be defined in the trait, and implementing a trait for a typemeans providing an implementation
of all the functions that the trait defines. In this way, the feature kernel::Module defines a function

3

3.2. Building 4

init(...), an implementation of which is provided between lines 18 and 21 of the preceding code.
The init function is called when the module is inserted into the kernel.

Finally, an implementation of the drop(...) function of the Drop feature is given. This function
will be called when the module is deleted.

3.2. Building

We need two more files: a KBuild file and a Makefile. Makefile are general building files used by
Make [8] that can be used for many purposes. Generally, Makefile are used to specify instructions
and rules to build big projects or to simplify the building chain, optimizing the build by ignoring the
already done building steps. KBuild files are kernel specific build files that are used by the build
system of the Linux kernel, which is based on Make, to build kernel objects.

Here, the Kbuild and the Makefile are pretty simple:

Kbuild

1 obj-m := hello_world.o

Makefile

1 KDIR ?= /path/to/linux/build
2

3 all:
4 $(MAKE) -C $(KDIR) M=$(PWD) modules CC=clang

The path to the Linux kernel build needs to be specified. The rust code provided inside the ker-
nel and the C code will be bound with the rust module. Using the make command will generate a
hello_world.ko file that can be inserted into the kernel.

Here are some interesting commands that help tomanipulate and inspect kernelmodules (table
3.1), and an example of use with the previous ”Hello World” module (figure 3.1).

sudo insmod hello_world.ko insert the module in the kernel
sudo rmmod hello_world delete module
sudo modinfo hello_world.ko print info about a module file
sudo lsmod list all installed modules
dmesg print the kernel logs

Table 3.1: Useful module commands

Figure 3.1: Example of module insertion

3.3. Limitations of the Rust support inside the Linux kernel 5

3.3. Limitations of the Rust support inside the Linux kernel

Writing and building a module works pretty simply. But in fact, what we can do inside the Linux
kernel is very limited. For now, the only things that can be implemented are printing into the logs of
the kernel andmanipulate data or strings. There is no support for implementing more complex and
interesting features such as IOCTL, memory allocation, network operations, or other features that
Tyche requires. The Linux project wants to improve rust support in the following years. This effort
took form into a secondary project called Rust for Linux: a Linux kernel withmore Rust features, and
the intention to merge the work done in the project into the Linux kernel mainline gradually [12].

The Rust code support provided inside the Rust for Linux project enable the implementation of
more interesting functionalities like file operations including IOCTLandmemorymapping, semaphores,
random number generation, etc.

From now on, the kernel used in this report will refer to the one from the Rust for Linux project,
as the one from the mainline doesn’t provide enough Rust support, and it is expected that the work
done on the Rust for Linux kernel will be moved into the mainline.

4
File operations and IOCTL

One of the most useful features that modules implement are the file operations interface. In Tyche,
we need to interact with the driver space to allocate memory and manage enclaves and we can do
that through file operations such as mmap or ioctl. This section lists common used file operations
in driver development, explains how to implement them and details how to implement IOCTL.

4.1. File operations

Once a driver is inserted in the kernel, it is associated with a device, which can be a hardware device
or not, and this device is identified by a file structure which can be found in the filesystem as a
regular file (in /dev/). File operations are used to implement system calls on the device file, like open,
read or mmap, which are handled by the driver. The following operations, defined in the Operations
trait in rust/kernel/file.rs, are available and equivalent to the file operations defined in the struct
file_operations structure in a C module.

Rust operations C operations

open open
release release
read read and read_iter
write write and write_iter
seek llseek
ioctl unlocked_ioctl
compat_ioctl compat_ioctl
fsync fsync
mmap mmap
poll poll

All file operations can be implemented with the Operation trait for the module.

Example:

1 // ...
2 // begin of the module file
3 // ...
4

5 struct RustFile;
6

7 #[vtable]
8 impl file::Operations for RustFile {
9 type Data = Box<Self>;
10

11 fn open(shared: &(), file: &File) -> Result<Box<Self>> {

6

4.2. Input / Output control (IOCTL) 7

12 // ...
13 }
14

15 fn read(
16 data: <Self::Data as ForeignOwnable>::Borrowed<'_>,
17 file: &File,
18 writer: &mut impl IoBufferWriter,
19 offset: u64,
20) -> Result<usize> {
21 // ...
22 }
23

24 fn ioctl(
25 data: <Self::Data as ForeignOwnable>::Borrowed<'_>,
26 file: &File,
27 cmd: &mut IoctlCommand,
28) -> Result<i32> {
29 // ...
30 }
31

32 fn mmap(this: &Self, file: &File, vma: &mut Area) -> Result {
33 // ...
34 }
35

36 // ...
37 // others file operation implementations
38 // ...
39 }

4.2. Input / Output control (IOCTL)

Input/Output control [5] is a syscall usually used for controlling specific operation of a device. One
can define a IOCTL more or less when no other syscall fits the scope of the operation we need to
define, even if it’s not controlling a hardware device. It is used to define specific operations that will
be executed on a specific file descriptor given as argument. In Linux, this syscall can be launched
with int ioctl(int fd, unsigned long request, ...) which takes as argument a file descriptor
fd of the module file and a numerical code request identifying the operation. The functions man-
aging IOCTLs are designed to be able to execute different operations depending on the code they
receive as an argument.

In this context, IOCTL management can be defined in the module’s file operations, as shown in
the code in the previous section. A simple implementation of the ioctl method could be:

1 #[vtable]
2 impl file::Operations for RustFile {
3 type Data = Box<Self>;
4

5 fn ioctl(
6 data: <Self::Data as ForeignOwnable>::Borrowed<'_>,
7 file: &File,
8 cmd: &mut IoctlCommand,
9) -> Result<i32> {
10 cmd.dispatch::<Self>(this, file)
11 }
12 }

The code cmd.dispatch::<Self>(this, file) transfers the call to a IOCTL handler which will
execute the corresponding operation for the given numeric code, present in the IoctlCommand.
A handler can be implemented in the same file as the module using an implementation of the trait
IoctlHandler (defined in file.rs). There is an example of such handler:

4.2. Input / Output control (IOCTL) 8

IoctlHandler example:

1 const IOCTL_PURE_PRINT_VALUE: u32 = 1;
2

3 impl IoctlHandler for RustFile {
4 type Target<'a> = &'a Self;
5

6 fn pure(_this: Self::Target<'_>, _file: &File, cmd: u32, arg: usize) -> Result<i32> {
7 match cmd {
8 IOCTL_PURE_PRINT_VALUE => {
9 pr_info!("driver received value {}\n", arg as u32);
10 Ok(0)
11 }
12 _ => Err(EINVAL),
13 }
14 }

This handler receives the command code from argument cmd and optional arguments in arg.
Then, if match on cmd to find the operation corresponding to the code. Only one code is available
here and it use the numerical value of IOCTL_PURE_PRINT_VALUE (=1 here), which is a magic number
that needs to be known both from the driver and from the user space calling the ioctl syscall.

Another kind of dispatching in this handler is on the direction bits of the IOCTL command it re-
ceives. Direction bits tell whether the user read or wrote and if the kernel read or wrote and are
contained in the request parameter and follow modern conventions. Using the macros _IO, _IOR,
_IOW or _IOWR, one can create the correct IOCTL request code with correct direction bits. For ex-
ample, the IOCTL call defined with the _IOmacro will be redirected to the pure function in the IOCTL
handler. But there are other functions available as table 4.2 shows.

IOCTL macro direction bits set handler function

_IO _IOC_NONE pure
_IOR _IOC_READ read
_IOW _IOC_WRITE write
_IOWR _IOC_READ|_IOC_WRITE read_write

Table 4.2: Direction bits and corresponding handler functions

IOCTL support is very important as Tyche needs to control its own drivers to triggers custom
kernel operations from userspace.

5
Memory allocation andmapping

Memory allocation and memory mapping is needed by Tyche to create enclaves: portions of mem-
ory that are opaque to the kernel and belong to a process. This section shows how to allocate
memory using the Pages structure and how to map this memory into user space.

5.1. Page allocation

The Rust for linux project implements a simple way to allocate memory using the Pages structure
and its associated functions defined in pages.rs.
Pages can be allocated by calling the new function on Pages as in: Pages::<0>::new(). The num-
ber inside the brackets is called the order and it is used to define the size of the allocation. The
allocation will have a size of 2order system pages. Then, to allocate only one page, one can call
Pages::<0>::new() as 20 = 1.

Allocation is done with alloc_pages function of the kernel. According to the code and documen-
tation of alloc_pages, the allocated pages are continuous and naturally aligned on the order (eg an
order-3 allocation will be aligned to a multiple of 8 × PAGE_SIZE bytes) [1]. For now, used page
flags are GFP_KERNEL, __GFP_ZEROand __GFP_HIGHMEM. Thatmeans that the allocationwill be internal
to the kernel, zeroed after allocation and be part of the high memory. We can’t specify allocation
flags when allocating with the Pages::new function. These behaviors are compatible with Tyche,
which requires pages to be aligned and continuous.

Moreover, the Pages structure offers functions for manipulating data of the page in a easy way,
as read or write functions.

5.2. Memorymapping

Memory mapping is a really important concept of system development. Mapping memory means
to select portions of virtual memory and associate them to a physical memory region, in a way that
operations on the virtual address space apply to physical memory and vice-versa (in practice this
mapping is done using translation of the virtual memory addresses into the associated physical
addresses so it’s the very same physical region).

Memory mapping is used to open files in memory, for inter-process communication (IPC), memory
allocation or evenmemory protection control. Tyche needsmapping in order to give back allocated
memory regions to userspace.

In UNIX system, memory mapping is usually done by the use of the mmap syscall:

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

9

5.2. Memorymapping 10

With, in the order of arguments: Start address in virtual memory, size of the projection, protection
flags, file descriptor (of the module file in our case) and the offset in this file. A call to mmap will be
redirected to the mmap implementation of the module. This mmap function is implemented inside
the file operations implementation of the module (cf in the code example of section 4.1).

Here is an example of what a mmap implementation could be:

1 fn mmap(
2 _this: &Self,
3 _file: &File,
4 vma: &mut Area,
5) -> Result {
6 const PAGE_SIZE : usize = 4096;
7

8 pr_info!("Begin of mmap");
9 let size = vma.end() - vma.start();
10

11 // size must be positive
12 if size <= 0 {
13 pr_err!("End is smaller than start");
14 return Err(EINVAL);
15 }
16

17 if vma.start() % PAGE_SIZE != 0 || vma.end() % PAGE_SIZE != 0 {
18 pr_err!("End or/Start is/are not page-aligned.");
19 return Err(EINVAL);
20 }
21

22 let page = match Pages::<0>::new() {
23 Ok(p) => p,
24 Err(e) => return Err(e),
25 };
26

27 vma.insert_page(vma.start(), &page)
28 }

This implementation only allocates one page of memory. The Area structure parameter is analo-
gous to (and in fact binded to) the vm_area_structC structure used in C modules. This represents
an area of the virtual memory of the process space and can be used to insert allocated pages in it
with the function insert_page.
After the mapping, all operations done on the mapped memory and all its data will be reflected on
all virtual spaces mapped to this region.

Asmemory allocation is available andcanbemapped touserspace tobelong toaprocess, Tyche
may be able to manage memory and create enclaves.

6
Using library crates inside amodule

The main motivation to use Rust for implementing drivers for Tyche is to reuse code between mod-
ules at kernel-level and application at user-level. This can be done using libraries. We will see how
Rust provides a way to use libraries, called library crates, in programs and how the Rust-for-Linux
project allows use of such crates inside a Rust module.

6.1. Crates specifications

In Rust, crates are defined as compilation units [9]. There are two types of crates: binary crates and
library crates. Binary crates are rust files compiled into a binary executable. Library crates are not
executable and don’t have a main function: they only provide code to be used in many other and
different programs, with the same intention as the other programming languages using libraries.

Usually, the folder structure of such a library crate is very simple: a src folder containing a lib.rs
rust file containing the code we want to export, and a Cargo.toml file specifying the dependencies
and how to build the crate.

Figure 6.1: Simple library crate folder structure

By default, Cargo (the build tool used to build crates andmanage dependencies) builds this crate
using default configuration and output library compiled files that can be used in other crates. But
here we are building a module that will be inserted in the kernel and then we need to override the
configuration to specify the target, the path to the rust crates in the kernel, the type of object that
rustc needs to output and more. This can be done by adding a config.toml file in a newly created
.cargo folder. Cargo will then use the configuration of that file instead of using its default behavior.
An example of such a config file is provided in figure 6.2, followed by explanation of the content of
this file.

11

6.2. Use a library crate inside amodule 12

Figure 6.2: config.toml configuration file

The second line of this example file specifies where to find the target.json file inside the kernel.
This target.json file specifies the target architecture, llvm-target triple, and other characteristics of
the kernel. Next lines are defining rust flags in order for the rust compiler (rustc) to find the rust code
in the kernel, what kind of object to output at the end of the compilation (here it’s an object file .o),
etc. All the rust flag meanings can be found on the official rustc documentation [16].

A last thing that needs to be done before we can be ready to use this crate for a kernel usage is
to put the #![no_std] crate-level attribute at the beginning of the lib.rs file, to avoid linking of the
std-crate that is not available inside the kernel, but to link to the core-crate instead.
From the documentation of the embedded rust language [11], one can find the following table 6.3
listing the feature available when std is used or not.

Figure 6.3: features available with no_std or std use

Once the library crate is ready, we can build it by calling the cargo build command at the root
of the crate folder. This will generate a .o file in /target/target/debug/deps.

6.2. Use a library crate inside amodule

Now that our crate is built and ready to be used, we can use it in our driver with the following clause,
as a regular library crate: use <library-name>

But there are still two steps to do before being able to build a .ko file ready to be inserted in the
kernel. First we need to update the Kbuild file to link with the generated crate build. We specify
parameters in the rustflags-y variable which will be added to compilation parameter so that rustc
can find the compiled target file. Andwe specify the module-yvariable to depend on ourmodule and
our library crate object files. Note that before, this wasn’t required to specify this as themodule was
constituted of only one file and now it depends on many files. So instead of specifying the object
file directly in obj-m, we create a <module_name>-y variable depending on all other object files, and
put <module_name>.o in obj-m. [6]

6.2. Use a library crate inside amodule 13

Kbuild

1 obj-m := <module_name>.o
2 rustflags-y := --extern <lib-crate-name> -L $(src)/<lib-crate-folder>/target/target/debug/deps
3 <module_name>-y := <module_main_file_name>.o <lib-crate-name>.o

The second thing to modify is the Makefile file. In the following example, line 4 just builds the
crate as we did in the previous part. The next line copy-paste the built .o file as a .o_shipped file at
the root of the module folder tree. .o_shipped files tells Kbuild that the content of this object file is
external to the kernel. Finally it builds the module as we did before.

Makefile

1 KDIR ?= path/to/linux/build/
2

3 build-ko:
4 cd <lib-crate-folder> && cargo build
5 cp <lib-crate-folder>/target/target/debug/deps/<lib-crate-name>-*.o <lib-crate-name>.o_shipped
6 $(MAKE) -C $(KDIR) M=$$PWD CC=clang

This results in a .ko module file that can be inserted into the kernel.

This approach allows the reuse of the code of the library in many different Rust modules and
userspace applications. It also benefits from the power of cargo to manage, build and optimize
code of shared libraries.

7
Comparison with the C language

This section is anoverviewof thebenefits anddrawbacksof usingRust insteadofCwhendeveloping
kernel modules.

First of all, Rust and C performances are pretty similar in terms of execution time and are fre-
quently compared[15]. But the size of the produced module in C or Rust can still be relevant to
compare.
We compare here the size of the .ko file that a module in C produces with its equivalent written in
Rust. The module simply prints a ”Hello world” message in the kernel logs. The annex A presents
both implementations of the C version and its Rust equivalent which are similar in size too.

The two versions were built using this version of clang and the following toolchain, without debug
info:

Clang version: Rust toolchain:
Debian clang version 11.0.1-2 1.66.0-x86_64-unknown-linux-gnu (default)
Target: x86_64-pc-linux-gnu rustc 1.66.0 (69f9c33d7 2022-12-12)

And here are the results of the size of the produces .ko files:

4448 bytes for the C ko file
4832 bytes for the Rust ko file

The Rust file is a bit heavier than the C one, and we might expect that it will always be the case
for more complex modules.

Comparing both languages on the building scope, both use Kbuild and Make to build and in the
example of annex A, both module versions can be built with the sameMakefile and Kbuild files. But
Rust requires the kernel to be built with Clangwhere usage of C can bemore flexible on the compiler
used. Rust can also benefit from Cargo when using library crates inside modules for managing
dependencies and building complex crates. Rust prevents memory safety violations and provides
concurrency safety [13]. It is coupled with a powerful compiler and analyzer that help programmers
toprevent crashesormemory errors. This is a really goodadvantageofRust overCwhendeveloping
a project based on trust and confidentiality like Tyche.

14

8
Conclusion

Currently, it is possible to write Rust Linuxmodules, but this is very limited by the Rust support of the
Linux kernel v6.3. What is available for now is actually a proof of work that Rust can be used inside
the kernel. Instead of using the mainline version of the kernel, we can take a look at the efforts to
integrate Rust into the kernel and use the Rust for Linux kernel to experiment with Rust integration.
The Rust for Linux project centralises progress made in this area and allows us to anticipate the
future steps of Rust integration. This project provides a lot of implementations of usualmechanisms
like memory allocation, memory mapping, Input-Output control and allows the use of external Rust
crates. All these mechanisms are essential to the Tyche project in order to write Rust drivers that
can create enclaves and manage them. In the future we can expect the Linux mainline to integrate
more and more progress made in Rust for Linux. Then, we will be able to use Rust to implement
functionalities of Tyche and benefit from Rust’s safety mechanisms, performance, compiler, build
tools and reusability of code between the user space application and the kernel module side.

15

References

[1] alloc_pages source code and documentation. URL: https://elixir.bootlin.com/linux/
latest/source/mm/mempolicy.c#L2247.

[2] Bindgen documentation. URL: https://rust-lang.github.io/rust-bindgen/.

[3] Castes, Charly, Ghosn, Adrien, Kalani, Neelu S., Qian, Yuchen, Kogias, Marios, Payer, Mathias,
and Bugnion, Edouard. 2023. Creating Trust by Abolishing Hierarchies. In Workshop on Hot
Topics in Operating Systems (HOTOS ’23), June 22–24, 2023, Providence, RI, USA. ACM, New
York, NY, USA, 9 pages. URL: https://doi.org/10.1145/3593856.3595900.

[4] Clang project. URL: https://clang.llvm.org/.

[5] IOCTL linux kernel documentation. URL: https://www.kernel.org/doc/html/latest/
driver-api/ioctl.html.

[6] Kernel Kbuild documentation. URL: https://www.kernel.org/doc/html/latest/kbuil
d/makefiles.html.

[7] Linux github repository. URL: https://github.com/torvalds/linux.

[8] Make wikipedia page. URL: https://fr.wikipedia.org/wiki/Make.

[9] Rust Crates documentation. URL: https://doc.rust-lang.org/book/ch07-01-packag
es-and-crates.html.

[10] Rust documentation. URL: https://doc.rust-lang.org/book/.

[11] Rust embedded documentation. URL: https://docs.rust-embedded.org/book.

[12] Rust for Linux wikipedia page. URL: https://en.wikipedia.org/wiki/Rust%5C_for%5C_
Linux.

[13] Rust programming language. URL: https://www.rust-lang.org/.

[14] Rust Quick Start. URL: https://www.kernel.org/doc/html/latest/rust/quick-
start.html.

[15] Rust versus C clang. URL: https://benchmarksgame-team.pages.debian.net/benchma
rksgame/fastest/rust-clang.html.

[16] Rustc command line arguments. URL: https://doc.rust-lang.org/rustc/command-
line-arguments.html.

16

https://elixir.bootlin.com/linux/latest/source/mm/mempolicy.c#L2247
https://elixir.bootlin.com/linux/latest/source/mm/mempolicy.c#L2247
https://rust-lang.github.io/rust-bindgen/
https://doi.org/10.1145/3593856.3595900
https://clang.llvm.org/
https://www.kernel.org/doc/html/latest/driver-api/ioctl.html
https://www.kernel.org/doc/html/latest/driver-api/ioctl.html
https://www.kernel.org/doc/html/latest/kbuild/makefiles.html
https://www.kernel.org/doc/html/latest/kbuild/makefiles.html
https://github.com/torvalds/linux
https://fr.wikipedia.org/wiki/Make
https://doc.rust-lang.org/book/ch07-01-packages-and-crates.html
https://doc.rust-lang.org/book/ch07-01-packages-and-crates.html
https://doc.rust-lang.org/book/
https://docs.rust-embedded.org/book
https://en.wikipedia.org/wiki/Rust%5C_for%5C_Linux
https://en.wikipedia.org/wiki/Rust%5C_for%5C_Linux
https://www.rust-lang.org/
https://www.kernel.org/doc/html/latest/rust/quick-start.html
https://www.kernel.org/doc/html/latest/rust/quick-start.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust-clang.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust-clang.html
https://doc.rust-lang.org/rustc/command-line-arguments.html
https://doc.rust-lang.org/rustc/command-line-arguments.html

A
Rust and C comparison programs

The followingMakefile andKbuild files canbeused tobuild both of the twoprogramsdescribedbelow:

Makefile

1 KDIR ?= path/to/linux/build
2

3 all:
4 $(MAKE) -C $(KDIR) M=$(PWD) modules CC=clang
5

6 clean:
7 $(MAKE) -C $(KDIR) M=$(PWD) clean

Kbuild

1 obj-m := hello_world.o

The followingprogramsare the ones usedas example in this report to compareCandRust languages
in kernel module development. The first is a C version of a ”Hello World” program, and the second is
its Rust equivalent

C version hello_world.c

1 #include <linux/init.h>
2 #include <linux/module.h>
3 #include <linux/kernel.h>
4

5

6 MODULE_LICENSE("GPL");
7 MODULE_AUTHOR("Noé Terrier");
8 MODULE_DESCRIPTION("C hello_world module");
9

10

11 static int my_init(void)
12 {
13 printk(KERN_NOTICE "Hello world from C module! (init)\n");
14 return 0;
15 }
16

17 static void my_exit(void)
18 {
19 printk(KERN_NOTICE "Goodbye from C module! (exit)\n");
20 return;
21 }
22

23 module_init(my_init);
24 module_exit(my_exit);

17

18

Rust version hello_world.rs

1 // SPDX-License-Identifier: GPL-2.0
2

3 //! Rust out-of-tree sample
4

5 use kernel::prelude::*;
6

7 module! {
8 type: HelloWorld,
9 name: "hello_world",
10 author: "Noe Terrier",
11 description: "Rust hello_world module",
12 license: "GPL",
13 }
14

15 struct HelloWorld;
16

17 impl kernel::Module for HelloWorld {
18 fn init(_name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
19 pr_info!("Hello world from Rust module! (init)\n");
20

21 Ok(HelloWorld {})
22 }
23 }
24

25 impl Drop for HelloWorld {
26 fn drop(&mut self) {
27 pr_info!("Goodbye from Rust module! (exit)\n");
28 }
29 }

	Introduction
	Rust language support in the kernel
	Dependencies
	How to activate Rust support within the kernel

	Write a first module in Rust
	Writing the module
	Building
	Limitations of the Rust support inside the Linux kernel

	File operations and IOCTL
	File operations
	Input / Output control (IOCTL)

	Memory allocation and mapping
	Page allocation
	Memory mapping

	Using library crates inside a module
	Crates specifications
	Use a library crate inside a module

	Comparison with the C language
	Conclusion
	References
	Rust and C comparison programs

