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Abstract

Low level software is often granted high privilege, yet this
need not be the case. Although vendor firmware plays a
critical role in the operation and management of the ma-
chine, most of its functionality does not require unfettered
access to security critical software and data. In this paper
we demonstrate that vendor firmware can be safely and
efficiently deprivileged, decoupling its functionality from
isolation enforcement.
We introduce a new class of systems, called virtual firm-

ware monitors, that run unmodified vendor firmware in user-
space through software-based virtualization of the highest
privilege mode of the application CPU. We describe the im-
plementation of Miralis, a RISC-V virtual firmware mon-
itor, and develop three security policies to protect the OS,
enclaves, and confidential VMs from malicious firmware.
We verify key components of Miralis, such as instruction
emulation and memory protection, through exhaustive sym-
bolic execution. Finally, we demonstrate that Miralis can
effectively virtualize unmodified vendor firmware for two
hardware platforms with no performance degradation com-
pared to native execution.

CCS Concepts: • Security and privacy → Virtualization

and security; Trusted computing; Embedded systems se-
curity.

ACM Reference Format:

Charly Castes, François Costa, Neelu S. Kalani, Timothy Roscoe,
Nate Foster, Thomas Bourgeat, and Edouard Bugnion. 2025. The
Design and Implementation of a Virtual Firmware Monitor. In ACM
SIGOPS 31st Symposium on Operating Systems Principles (SOSP ’25),
October 13–16, 2025, Seoul, Republic of Korea. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3731569.3764826

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
SOSP ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1870-0/25/10
https://doi.org/10.1145/3731569.3764826

1 Introduction

The security challenges resulting from multi-tenancy, in-
creased exposure to networks and other external threats, sup-
ply chain attacks, and more capable adversaries have forced
systems designers to shift from traditional models based on
trusted, privileged components to ones based on mutual dis-
trust between components. In particular, Trusted Execution
Environments, rely on a privileged security monitor that pro-
tects applications or virtual machines from untrusted kernels
or hypervisors. All major Instruction Set Architectures (ISAs)
now offer TEE hardware extensions [15, 21, 23, 54, 55, 68],
and a growing number of software solutions seek to provide
similar security guarantees [37, 48, 49, 62, 73, 79, 99].
Security monitors have thus become one of the most im-

portant software components running on modern systems,
acting as the root of trust supporting TEEs. One might ex-
pect such critical components to be well-isolated from other
software on the machine, but this is not the case today: in
most systems, security monitors are co-located with vendor-
supplied firmware running at the highest privilege level on
the application CPU, with no isolation between them. Bugs
or vulnerabilities in the tens-to-hundreds of thousands of
lines of firmware code can compromise the security of the
entire platform [36, 44, 47, 70, 88].

In this paper, we show how to apply the principle of least-
privilege to vendor firmware to strengthen the guarantees
provided by TEEs.We propose a new class of system software
called Virtual Firmware Monitors (VFMs) that de-privilege
vendor firmware by virtualizing the highest privilege mode
on the application CPU. A VFM runs vendor firmware in
user-space and intercepts accesses to privileged resources
and configuration registers. Figure 1 provides a comparison
of VFMs with existing systems.
A VFM has two components: (1) a required firmware vir-

tualization subsystem and (2) an optional fast path offloading
subsystem for better performance. The former relies on clas-
sical software virtualization techniques without requiring
specific hardware extensions. Under the classical Popek and
Goldberg definition of virtualizability [81], we find that RISC-
V’sM-mode is virtualizable but that Arm’s EL3 is not. The
fast path offloading subsystem bypasses the deprivileged
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Figure 1. Comparison of TEE deployments on RISC-V. With Keystone [62] and most TEEs the security monitor is co-located
with the vendor firmware. Dorami [61] is a recent attempt at privilege separation that requires firmware refactoring and
binary scanning. Our solution achieves privilege separation with no firmware modification.

firmware for common operations, and is only required on
platforms which rely heavily on software emulation of op-
tional hardware features.
We present the implementation of Miralis, the first vir-

tual firmware monitor. Miralis is written in Rust, runs on
RISC-V, and is extensible, supporting custom isolation poli-
cies. We demonstrate the virtualization and sandboxing of
unmodified vendor firmware for multiple hardware plat-
forms including VisionFive 2, HiFive Premier P550, and pop-
ular open-source firmware. We further extend Miralis with
support for secure enclaves and confidential VMs by porting
the Keystone [62] and ACE [79] security monitors respec-
tively. Unlike previous security monitors and other attempts
at privilege separation, Miralis required no vendor firmware
modifications. We evaluate Miralis’s performance on a wide
range of applications and report no degradation compared
to native execution.

In the course of developingMiralis, we designed a new au-
tomated framework for verifying key components of VFMs,
including instruction emulation and hardware configuration.
While we do not aim at full formal verification of security
properties [58], we do provide pragmatic, automated tools to
find bugs and improve assurance using lightweight formal
methods [18, 30, 57]. Our key insight is to express the VFM
specification in terms of existing, high-quality executable
ISA specifications [24, 83]. We apply our method to verify in-
struction emulation and memory isolation in Miralis using
the Kani [94] Rustmodel checker. This methodology allowed
us to identify and correct 21 bugs in development, including
losses of virtual interrupts, PC overflow, and out-of-bounds
accesses.

In summary, our contributions are as follows:

C1 We theorize that it is possible to safely and efficiently
deprivilege and isolate unmodified vendor firmware.

C2 We prove by construction that our approach can be
deployed on commercially available RISC-V platforms,
and detail the design and implementation of Miralis.

C3 We explain how to automate the specification and ver-
ification of virtual firmware monitors.

2 Background and Motivation

In this section we define our key terms and concepts and
motivate the need for sandboxing unmodified firmware.

2.1 The Anatomy of Firmware

“Firmware” is often an umbrella term for a variety of software
running on a physical machine: devices, management con-
trollers, and security co-processors all run different flavors of
firmware. In this paper we use “firmware” to mean software
running at the highest privilege level on the application CPU,
such as Arm’s EL3 and RISC-V’s M-mode, although other
kinds of firmware are the subject of complementary research
efforts [50, 51]. We exclude AMD and Intel x86_64 from our
discussion because of their heavy reliance on microcode for
system management [27] and the complex, vendor-specific,
and often undocumented privilege modes required for sys-
tem operations (such as SMM, SEAM, Architectural Enclaves,
or the AMD Secure Processor [38, 41, 89]).

In contrast, the Arm and RISC-V architectures implement
system management in software using well-documented
privilege levels, and on high-end Arm and RISC-V platforms
the process of building firmware is standardized around an
open core with vendor-specific extensions. The core infras-
tructure is provided by open-source firmware libraries, such
as Arm TF-A [16] and RISC-V OpenSBI [14]. Those libraries
are high-quality and well-audited, although vulnerabilities
in them do appear [17]. Above the core, vendors add their
own management code: drivers, debugging tools, configura-
tion, telemetry, and more. To take one example, the vendor
firmware of the Cavium ThunderX-1 Arm CPU is more than
a million lines of C, including a custom standard library,
scheduler, and Lua interpreter to customize firmware op-
erations [74]. Often, vendor firmware is provided without
source, as an opaque binary.

2.2 Vendor Firmware and TEEs are incompatible

While firmware vulnerabilities often make the headlines [7–
11] and security researchers continue to find new flaws in
vendor firmware [36, 44, 47, 70, 88], the threat of a buggy
or malicious firmware has been largely ignored by system
software designers so far. Even high-assurance systems like
seL4 [58] simply assume the firmware to be correct – not
out of negligence, but because firmware by its nature is a
highly privileged, non-portable, and proprietary artifact.
However, this is particularly problematic in the context

of TEEs such as enclaves [25, 42, 48, 49, 62] and confidential
VMs (CVMs) [68, 79, 86], all of which rely on a security
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monitor to enforce isolation between trusted and non-trusted
environments. This security monitor currently runs at the
same privilege level as the vendor firmware.
Figure 1 shows TEE deployments on RISC-V, where the

security monitor is co-located with vendor firmware [25, 62,
79]. This means that the whole vendor firmware image is part
of the security monitor’s Trusted Computing Base (TCB).
For RISC-V, the problem will get worse as RISC-V cores and
vendor firmware become more complex, particularly with
an increased emphasis on server platforms.

The Arm architecture provides separation of vendor firm-
ware and security monitor via additional privilege modes,
such as TrustZone [23] and realm EL2 [12], but this fails to
address the fundamental security issue: vendor firmware re-
mains more privileged than security monitors, and the latter
must trust the former.

Dorami [61] is a recent RISC-V security monitor that iso-
lates firmware in anM-mode compartment. However, it re-
quires binary scanning and vendor firmware modification for
each platform and thus faces significant adoption challenges.
If vendors choose not to adopt Dorami and the associated
re-engineering effort, the problem remains.

2.3 Threat Model

We therefore define our threat model as follows: we assume
an adversarywith full control over vendor-supplied firmware
and the OS or hypervisor. Furthermore, we assume that the
vendor firmware binary is closed and cannot be modified by
the system operator.
We exclude physical attacks, denial of service, or attacks

from firmware running on auxiliary cores or other devices in
the platform. Further, transient execution attacks [33, 59, 71,
75, 82] are also out of scope, although standard mitigations
can be applied [28]. We also assume that platform-specific in-
structions, hardware registers, and MMIO regions are known
and documented (although the vendor firmware itself may
be closed), and that the hardware adheres to its specification.

Under this threat model, we guarantee that the adversary
can neither gain code execution capability (integrity) at the
highest privilege level nor gain access to memory used by
code at this level (confidentiality). In §5 we further discuss
how to extend this protection to other components of the
system, such as the OS, enclaves, or confidential VMs.

3 Virtual Firmware Monitors

In this paper we show how to make security monitors secure
in the presence of untrustworthy vendor firmware without
requiring new hardware or changes to firmware binaries.
We introduce a new category of system software, the Virtual
Firmware Monitor (VFM), to enforce the principle of least
privilege all the way down to firmware.

VFM

Kernel

App Firmware

Firmware

VMM

App KernelU-mode

S-mode

M-mode

Classical Virtualization Firmware Virtualization

Trap & emulate Direct executionHost
Figure 2. Classical vs. firmware virtualization.

VFMs rely on classical virtualization to de-privilege only
vendor firmware, achieving this using software-based virtu-
alization techniques without requiring any additional hard-
ware extension.

3.1 Theory of Classical Virtualization

In 1974 Popek & Golberg formulated the formal architectural
requirements to support virtual machines safely controlled
by a Virtual Machine Monitor (VMM) using a technique called
trap & emulate [81]. The approach is purely software-based
and predates the introduction of CPU virtualization exten-
sions [20, 93] and modern hypervisors. The resulting require-
ments provide sufficient criteria for virtualizable ISAs: all
sensitive instructions must be privileged. An instruction is
said to be sensitive if it modifies or depends on the privileged
state or privilege level. Famously, not all ISAs are classically
virtualizable, e.g., x86_32 is not classically virtualizable as in-
structions such as popf are “sensitive” ” and leak privileged
state (e.g., the interrupt flag) [32].

Figure 2 (left) illustrates classical virtualization on a RISC-
V architecture, where the unmodified guest kernel runs in
user-mode (U) rather than supervisor-mode (S). Upon exe-
cuting a privileged instruction, the guest kernel traps to the
VMM, which then emulates the trapping instruction and
resumes the kernel in U-mode, effectively creating a virtual
S-mode in user space.

3.2 Firmware Virtualization

Firmware Virtualization extends the concept of classical vir-
tualization to the highest privilege level, which is used to
execute firmware, i.e., machine-mode (M-mode) on RISC-V.

Figure 2 (right) shows how, by analogy with classical vir-
tualization, a VFM creates a virtualM-mode (vM-mode) by
running firmware in user-space with trap & emulate. Im-
portantly, the host OS (both S- and U-mode) runs natively
without interference from the VFM. As VFMs are used solely
for isolation they do not require the complexity of tradi-
tional hypervisors needed to multiplex physical resources
like memory management, scheduling, and device drivers.
VFMs can co-exist inM-mode with security monitors that
implement TEE abstractions, and do not interfere with hy-
pervisors running in S or HS-mode.
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Figure 3. Distributions of M-mode trap causes over time
during Linux boot on the VisionFive 2. Only five causes
account for 99.98% of all traps.

The classical virtualization requirements of Popek & Gol-
berg [81] also provide a good lens to reason about the con-
struction of VFMs. A manual review reveals that RISC-V’s
M-mode is virtualizable, while Arm’s EL3 is not. Indeed, just
as the x86_32 popf instruction is “sensitive”, the operation
of the Arm cpsid instruction used to disable interrupts also
depends on the current privilege level but does not trap:
instead, it is treated as a no-op in userspace.

3.3 Access Control to System Resources

A VFM enables enforcing fine-grained access control to sys-
tem resources beyond main memory. Vendor firmware con-
figures and operates the hardware through two means: con-
trol registers to configure CPU cores, and Memory Mapped
I/O (MMIO) for the rest of the system. By design, a VFM
intercepts all accesses to control registers by trapping privi-
leged instructions and can decide to either forward the write
to the hardware register, filter the value, or simply ignore
it. Similarly, a VFM leverages the memory protection unit
(PMP on RISC-V) to trap accesses to MMIO regions.

3.4 Fast Path Offloading

An explicit requirement of the VFM is to minimize the impact
on OS performance. A VFM introduces two kinds of over-
head: emulation of privileged operations during firmware
execution, and world switches on a transition between the
firmware and the OS. Notably, a VFM introduces no over-
head during OS execution. The impact on OS performance
is therefore proportional to the number of – and duration of
– world switches to the virtualized firmware.

To better understand the performance implications of a
VFM we measure the interactions between Linux and the
vendor firmware on the VisionFive 2 RISC-V single board
computer and plot the results in Figure 3, which represents
the proportion of traps from the OS to the firmware grouped
per category during 500ms windows throughout the kernel
boot, including the bootloader, early kernel initialization,
and idling in user-space.

On this platform 99.98% of all traps to firmware have one
of five causes: reading the time register, configuring the
timer deadline, misaligned load & store, IPIs, and remote
fences. Those traps all share an important property: they
are software emulation of unimplemented hardware features
specified in the RISC-V architecture [85, 96]. Any hardware
that does not implement this functionality will require the
same generic emulation. For instance, the supervisor timer
deadline is part of the Sstc RISC-V extension, while IPIs and
remote fences require a compatible interrupt controller.

Due to this portable nature, and because of the high trap
frequency (5500 trap/s during boot), we can offload the han-
dling of the most traps to the VFM itself, bypassing the vir-
tualized firmware. This is practical because the features are
part of the open RISC-V standard and are portable across
RISC-V platforms and vendors. In our experience, each can
be implemented in 10 to 100 lines of code. We emphasize that
this does not involve porting code from vendor firmware, nor
does it require firmware to be open-source as long as it ad-
heres to the RISC-V standard SBI [84]. Doing so reduces the
number of world switches to just 1.17 per second during the
boot sequence, and therefore has no noticeable performance
overhead compared to the baseline.

We revisit and measure the impact of this design decision
in the evaluation section (§8). In particular, we find that sup-
port for reading the time CSR and the supervisor timer (Sstc)
extension would remove the need for fast path offloading.
For instance, fast path offloading is not required on CPUs
implementing RVA23 or a more recent RISC-V profile [3].

4 M-mode Virtualization with Miralis

This section presents the design of Miralis, a virtual firm-
ware monitor for RISC-V platforms. Miralis is written in
Rust, executes inM-mode, and can run unmodified firmware
in user-space by simulating a virtualM-mode through trap
& emulate. In the following we describe the virtualization
of three main aspects of the RISC-V architecture: the CPU,
memory protection unit, and interrupts.

4.1 CPU Virtualization

Miralis executes inM-mode with interrupts disabled and
follows a simple executionmodel where trap handlers always
run to completion. Figure 4 provides an overview of the
design of Miralis. At any time, a CPU core (i.e., hart on
RISC-V) executes in one of two worlds: vM-mode for the
virtual firmware, and direct execution for the OS. The trap
handler dispatches traps to different subsystems based on the
world the trap comes from. A trap from the virtual firmware
will result in software emulation, whereas traps from the
OS are either re-injected in the virtual firmware or handled
directly by Miralis as a fast path for common operations.
Miralis additionally virtualizes M-mode interrupts, such as
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timer and Inter-Processor Interrupts (IPI), by intercepting
and re-injecting corresponding physical interrupts.
During virtual firmware execution all S- or M-mode in-

structions trap to Miralis for emulation. The instruction
emulator is the biggest subsystem in Miralis, with 2.1k lines
of code to implement the decoder and execution engine for
privileged instructions. On RISC-V the number of privileged
instructions is small, Miralis has support for 12. The com-
plexity, however, lies in the emulation of the Control and
Status Registers (CSRs), which occupies most of the RISC-
V privilege architecture specification [96]. The number of
CSRs is platform specific; Miralis has support for 84 of them.
Miralis maintains a shadow copy of the CSRs on which the
instruction emulator operates. Those virtual CSRs are never
installed in the physical registers while the virtual firmware
is executing, although Miralis will configure the physical
CSRs in accordance for emulation purposes. Memory traps
are handled by different subsystems, as explained in §4.2 and
§4.3, while all other traps are simply re-injected in vM-mode.

After processing each trap, Miralis checks for vM-mode
interrupts and which execution mode (firmware or OS) to
return to. A virtual interrupt must be injected if it is both
pending and enabled. This check must be done after emula-
tion as traps and privileged instructions can mask or unmask
interrupts (e.g., mie CSR). The last step is to check for world
switches. A world switch is when Miralis switches from vM-
mode (firmware mode) to direct execution (OS mode) or vice
versa, usually because of a trap from the OS or the firmware
executing the mret instruction. Each direction requires a
different handling: from firmware to the OS Miralis installs
the virtual CSRs into the physical registers, except for CSRs
required for emulation or isolation such as PMP and mie, and
conversely from the OS to firmware Miralis loads the con-
tent of the physical CSRs into the virtual copies and installs
well defined values in physical registers. As a world switch
involves changing memory permissions, it also requires a
TLB flush. Finally, Miralis restores the general purpose reg-
isters and returns control to the appropriate mode.

4.2 Physical Memory Protection Virtualization

On RISC-V, M-mode software does not use an MMU for
memory management and protection but instead relies on
Physical Memory Protection (PMP). Unlike virtual mem-
ory systems, PMP virtualization does not require shadow or
multi-level page tables, thus simplifying emulation.
PMP rules are defined using up to 8 configuration regis-

ters and 64 address registers, each protecting a contiguous
memory segment. Rules are evaluated in order of priority,
with the first matching entry determining access permissions.
Miralis provides virtual PMP CSRs to the firmware by mul-
tiplexing the physical PMP registers, as shown in Figure 5
in the case of 8 physical PMP entries. The virtual PMP en-
tries are installed in the physical registers with lower priority
than the entries protecting Miralis to ensure Miralis’s PMP

MMIO device
emulator

Trap handler

Firmware trap OS trap Interrupt

Memory
trap

MPRV
emulator

MMIO device
emulator

Instruction
emulator

If any, inject
virtual interrupt

If required, trigger
world switch

Trap to
vM-mode

Return from trap

Operating System

M-mode

U-mode
S-mode

Firmware

MMIO device
emulator

Fast path
offloading

Figure 4.Overview of Miralis: Firmware executes in virtual
M-mode and OS traps and associated devices are emulated.
Green boxes are verified via symbolic execution (see §6).
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Figure 5. Physical PMP access rights configuration for mem-
ory virtualization in the different execution modes. RWX
stands for read-write-execute, - - - for no permission.

rules always take precedence. As PMPs do not take effect
inM-mode unless locked, Miralis sets read-write-execute
permissions on unlocked vPMP entries while executing the
firmware to mimic hardware behavior.

In addition to reserving PMP entries to protect Miralis’s
own memory and MMIO devices, Miralis reserves three
extra entries to emulateM-mode memory protection. First,
by default M-mode is granted access to all memory whereas
S- and U-mode are granted no access. When running the
virtual firmware in vM-mode (i.e., physical U-mode) Miralis
configures read-write-execute permissions for all memory
using the last PMP entry to emulate this behavior. On world-
switches, the last entry is disabled to match S- and U-mode
semantic. Second, with the Top of Range (ToR) addressing
mode, the starting address of the segment is defined by the
preceding entry. When the PMP 0 entry uses ToR addressing
mode, the starting address is hardwired as 0. To ensure virtual
PMP 0 behaves accordingly in ToR addressing mode, the
physical PMP entry preceding the PMP entry that hosts
vPMP 0 (e.g., entry 3 on Figure 5) must be configured with the
address 0. Finally, the mstatus.MPRV bit (Memory PRiVilege)
modifies the effective privilege mode for loads and stores but
not for instruction read, inM-mode. This allows the firmware
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Table 1.Miralis lines of code decomposition
Emulator 2.7k LoC Fast path offload 190 LoC
Hardware interface 1.1k LoC Other 1.8k LoC
MMIO devices 430 LoC Total 6.2k LoC

to read orwrite data using the kernel or user virtual addresses
without software page table walk. We emulate this behavior
by setting a PMP entry with execute-only permission on all
memory when the firmware enables MPRV. This causes all
loads and stores to trap to Miralis, which then install the
page tables and perform the access on behalf of the firmware
using MPRV itself.

4.3 Interrupts, Devices, and MMIO Virtualization

Miralis does not virtualize devices such as disks or network
interface cards, as such devices are usually managed by the
kernel rather than the firmware. Therefore, Miralis forces
the delegation of all non-M-mode interrupts by hard-wiring
corresponding bits to 1 in the virtual mideleg CSR, as al-
lowed by the RISC-V specification [96]. This only leaves
M-mode interrupts to be virtualized.
On the platforms we consider, the only MMIO device

which needs emulation is the CLINT (Core Local INTer-
ruptor). In contrast, we found that other devices such as
the PLIC, cache controllers, or embedded NPU and GPU do
not need emulation because they are either not used by the
virtual firmware, or used only during initialization and ac-
cess can be safely revoked afterward (see sandbox policy
§5.2). A virtual MMIO device is created by protecting the
corresponding MMIO region with a PMP entry. Then on
a memory trap, Miralis checks if the access is within the
bounds of an MMIO device and calls into the correspond-
ing device emulator. Miralis’s virtual CLINT multiplexes
timer and software interrupts between itself and the virtual
firmware. Miralis also has experimental support for virtu-
alizingM-mode external interrupts through a virtual PLIC,
although it is not needed on the platforms we support as
vendor firmware delegates all external interrupts to the OS.

Finally, Miralis needs to restrict direct memory accesses
(DMA) by the firmware. On platforms with IOPMP [2] sup-
port, Miralis would virtualize the IOPMP to restrict which
memory regions can be accessed through DMA by the firm-
ware, similarly to how Miralis restrict direct memory ac-
cesses through PMP virtualization (§4.2). As with PMP virtu-
alization, this would only incur a small overhead on IOPMP
modification, and a minimal runtime overhead if IOPMP was
not already enabled by the platform’s firmware [97]. How-
ever, as IOPMP is not widely supported yet, Miralis defaults
to preventing firmware DMA by blocking firmware access
to all MMIO regions controlling DMA-capable devices.

4.4 Comparison with Hypervisors

In our experience developing Miralis, VFMs are drastically
simpler software than traditional hypervisors, even with
hardware support for virtualization. Indeed, virtualizing firm-
ware is a simpler problem in many aspects: (1) there is a sin-
gle virtual firmware, removing the need for memory, CPU,
and devices multiplexing; (2) firmware-level instructions and
features are easier to virtualize, such as the PMP compared
to an MMU; and (3) there is no need for complex drivers
beyond interrupt controllers. Table 1 provides a breakdown
of Miralis’s implementation.

5 Isolation Policies

So far, we have discussed how to virtualize a firmware, but
not how to isolate the rest of the system from a buggy or
malicious firmware. This section describes how to enforce
isolation policies with Miralis, leveraging the same ideas
behind security monitors built on top of traditional hypervi-
sors [13, 37, 52, 53, 73, 99]. As VFMs are useful across a wide
variety of scenarios and requirements, we designed Miralis
to be extensible, with support for custom isolation policies.

5.1 Policy Modules

An isolation policy is defined in terms of a policy module, i.e.,
a Rust struct that implements the policy module interface.
The interface consists in seven optional methods: three are
called on ecall, trap, and world switch from the firmware,
three other from the OS, and one called on interrupts. The
methods either complement or overrideMiralis’s implemen-
tation based on the return value. In addition, policy modules
can get assigned PMP entries with higher priority than the
virtual PMPs to configure memory protection for both the
OS and firmware. Policy modules are meant to implement
security monitor features and decoupleM-mode virtualiza-
tion from use case-specific isolation requirements. In the
following we present three examples of policy modules.

5.2 Firmware Sandbox Policy

The firmware sandbox policy isolates the whole OS from
an untrusted firmware. More precisely, the policy allocates
a small memory range for the firmware and blocks access
to the rest of the memory, including OS memory, the PCIe
address space, and most other MMIO devices. In addition,
the policy saves and restores general purpose registers and
S-mode CSRs to prevent unintended leakage. In the case of
explicit calls to the firmware (SBI calls), the policy module
allows a well-defined set of registers to be passed as SBI
call arguments. We automatically generate the per-SBI call
register allow-list from the SBI specification [85]. Finally,
some firmware need access to platform specific CSRs or
MMIO regions to operate and configure the hardware. Access
to those resources is denied by default but can be granted
assuming that the hardware vendor accurately documents
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the effects of those resources and that they do not allow
the firmware to bypass the sandbox policy restrictions. In
our implementation, Miralis will stop the machine with an
error message if the firmware performs an illegal action. In
production systems, we imagine that Miralis would instead
log the invalid action and return arbitrary values. This would
enable the detection of malware, such as rootkits, without
impacting the OS execution.
Threat model: The sandbox policy considers an adver-

sary with full control over the firmware whose goal is to
violate the integrity or confidentiality of the OS. Physical and
side channel attacks are out of scope of the policy. Assuming
the hardware behaves as documented, the sandbox policy
guarantees the integrity and confidentiality of the OS.
On the two platforms used in our evaluation sandbox-

ing the firmware had surprisingly little consequences, all of
which could easily be worked around. First, the firmware
needs access to OS memory during initialization to load the
S-mode bootloader (U-Boot in our case). As a result we allow
access to all OS memory until the first jump to S-mode, at
which point the policy locks down the OS memory on all
harts until the machine is powered off and then compute a
hash of the initial S-mode image. Second, on some platforms
the firmware is used to emulate misaligned loads and stores.
We thus simply implemented the misaligned loads and stores
emulation directly in the policy. Finally, the Linux printk
early console was configured to use an SBI call requiring
shared memory between the OS and firmware.

5.3 Keystone Policy

The Keystone [62] policy is a re-write of the Keystone secu-
rity monitor in Rust as a Miralis policy module. The Key-
stone policy adds support for enclaves to Miralis, a common
TEE abstraction [42, 55, 73] that protects a user application
from the OS and hypervisor. The policy exposes the same SBI
interface as the original Keystone security monitor, such as
the ability to create, run, and terminate enclaves, although
our current implementation lacks attestation capabilities.
Therefore, we re-use the existing Keystone infrastructure
including the enclave runtime, libraries, and kernel module.
The policy protects the enclave using policy PMPs that take
priority over the virtual PMPs, protecting the enclave from
both the OS and firmware.
Threat model: The Keystone policy follows the same

threat model as the original Keystone security monitor [62]
except that the vendor firmware is no longer trusted and
follows the same attacker model as the OS.

5.4 ACE Policy

TheACE policy provides support for confidential VMs (CVMs)
by porting the ACEmonitor [79] to Miralis. With CVMs the
host hypervisor is responsible for managing and scheduling
VMs, but has no access to the underlying memory, mak-
ing the content of the VM confidential from the hypervisor

Physical HW Interface
VFM
Virtual HW Interface

HW
Spec

VM
Config

Platform
Config

Figure 6. The host and virtual hardware interfaces follow
the same hardware specification, but with different configu-
rations.

point of view. The firmware, however, can get access to the
VM’s content. All major ISA have support or plan to support
CVMs [54, 68, 86, 89]. The ACE monitor is an M-mode secu-
rity monitor that enforces isolation between the host hyper-
visor and CVMs through PMPs. To run CVMs, ACE leverages
the RISC-V H (hypervisor) extension which introduces the
HS and VS-mode. Note that supporting HS and VS-mode
in Miralis requires no special treatment compared to any
other S-mode extension, it suffices to implement support for
saving and restoring the new CSRs on world switches and
creating shadow copies.
Threat model: The ACE policy follows the same threat

model as the originalACEmonitor [79], except that the adver-
sary additionally has full control over the virtual firmware.
As ACE is significantly more complex than the Keystone

monitor and already written in Rust, we port the existing
monitor as a policy module rather than attempting a full
re-implementation. To minimize changes to the ACE code
base we opt for a co-location approach, where the ACE policy
takes control over M-mode while running the host hypervi-
sor and confidential VMs by handling traps directly without
Miralis intervention, but yield back to Miralis when trap-
ping to the firmware.

6 Hardening VFMs with Lightweight

Formal Methods

While developing Miralis we found it difficult to accurately
implement an emulator for RISC-V privileged instruction
based on the prose in the English specification [96]. Each of
the CSRs we added required translating the corresponding
chapter into code, and searching through the whole manual
for other CSRs whose behavior was affected by the new
values. The emulator is the biggest attack surface exposed
to the firmware, with 2.7k lines of code (see Table 1). Any
mismatch between the emulator and the specification might
ultimately lead to the injection of faulty values during a
world switch and compromise the OS.

As we realized that manual translation of the prose specifi-
cation was not sustainable we set out to leverage the official
executable ISA specification [24, 87]. Although we acknowl-
edge that formal verification has led to impressive results
in proving various properties for similar systems [19, 58, 63,
67, 91, 95], it typically required a huge effort and manually
written specifications. We do not aim at full verification of
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general properties, but rather a pragmatic, highly automated,
and non-disruptive approach that can verify critical compo-
nents of VFMs against an authoritative, high quality specifi-
cation through lightweight formal methods [18, 30, 57, 76].
Our key idea is to express the specification of a VFM as

a function of the underlying ISA. Then, existing ISA speci-
fications, such as the official RISC-V Sail model [4], can be
leveraged to automate the generation of the VFM specifica-
tion. For this purpose we formalized two criteria, faithful
emulation and faithful execution, that guarantee proper emu-
lation and configuration of the hardware, respectively. We
then generate a Rust VFM specification and use the Kani [94]
Rustmodel checker to check for divergence betweenMiralis
and the VFM specification.We use our methodology to verify
privileged instruction emulation, virtual interrupt delivery,
and memory protection.

6.1 Modelling the Architecture

Our key insight is that a VFM re-exposes the ISA interface,
although with different configuration. Figure 6 illustrates
the physical and virtual interfaces. Therefore, a VFM spec-
ification can be expressed as a function of the hardware
specification.
The ISA defines the transition function of the system’s

state machine. The transitions depend on the configuration
𝑐 ∈ 𝐶 of the platform (accessible memory ranges, available
hardware extensions, number of PMP entries, etc.) and the
current state 𝑠 ∈ 𝑆 of the machine (registers and memory).
For simplicity we make the next instruction 𝑖 ∈ 𝐼 explicit—
i.e., we encode the instruction fetch in the model. Note that
interrupts can be modelled as special instructions. We can
then formalize the hardware transition function as follows:

ℎ𝑤 : 𝐶 × 𝑆 × 𝐼 → 𝑆.

Here, the ℎ𝑤 function encodes the whole architecture—
e.g., 16k lines of code for the official RISC-V Sailmodel [4]. By
fixing a configuration 𝑐 , ℎ𝑤 can also be used as a simulator.
Indeed, Sail can generate C and OCaml simulators from
the RISC-V model. In short, the ℎ𝑤 function is an already
existing, high-quality specification of the architecture.

6.2 Faithful Emulation

Privileged instructions (and interrupts) executed by the firm-
ware trap to the VFM for software emulation. We designate
the emulation function of a VFM as 𝑣𝑓𝑚, where 𝐼𝑝 ⊂ 𝐼 is the
set of privileged instructions:

𝑣𝑓𝑚 : 𝑆 × 𝐼𝑝 → 𝑆

The 𝑣𝑓𝑚 function corresponds to one iteration of the trap,
emulate, resume loop of the VFM. Using these definitions,
we can define faithful emulation, which states that the VFM
implements a correct virtual hardware interface:
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hwvfm

HW
spec

VM
config

VFM
emulator

Figure 7. The faithful emulation criteria. A VFM implemen-
tation properly emulates the virtual hardware interface if for
any state and instruction the resulting state is equivalent to
what a reference machine would produce.

Definition 1 (Faithful emulation).

∃𝑐 ∈ 𝐶, ∀(𝑠, 𝑖) ∈ 𝑆 × 𝐼𝑝 , 𝑣𝑓𝑚(𝑠, 𝑖) ≃ ℎ𝑤 (𝑐, 𝑠, 𝑖)

In plain English, the VFM and ISA specifications produce
the same output for the same input, at least for all privileged
instructions. The comparison (≃) implicitly takes into ac-
count differences in internal representation of the system
state. The faithful emulation criteria has been used in pre-
vious works to generate test cases [22, 72], in this paper we
demonstrate it can scale to exhaustive symbolic execution of
a VFM emulation subsystem. Figure 7 illustrates the criteria.

6.3 Faithful Execution

To enforce identical behavior compared to a reference ma-
chine while the firmware executes un-privileged instructions
directly, the VFM must configure the host hardware to be-
have appropriately. The difficulty comes from the difference
in configuration between the host and reference machine,
for instance fewer virtual than physical PMP entries, as well
as the need for the VFM to maintain its own privileged state.
To make reasoning easier it is helpful to partition the

machine’s state between privileged and unprivileged state,
i.e., 𝑆 = 𝑆𝑝 × 𝑆𝑢 . Further, as per the Popek and Goldberg
criteria (§3.1), the privileged state cannot be modified by
unprivileged instructions, thus we consider a restriction of
ℎ𝑤 to the unprivileged state:

ℎ𝑤 |𝑢 : 𝐶 × 𝑆𝑝 × 𝑆𝑢 × 𝐼 → 𝑆𝑢 .

Faithful execution requires that the VFM configures the
host privileged state such the the virtual firmware executes
as it would on a reference machine. During privileged in-
struction emulation the VFM might update the firmware’s
privileged state 𝑝𝑣 ∈ 𝑆𝑝 , which is often kept in in-memory
data structures, and gets a chance to modify the host’s own
privileged state 𝑝ℎ ∈ 𝑆𝑝 , which is installed in the hardware
during firmware execution. We use 𝑐𝑓𝑔 : 𝑆𝑝 → 𝑆𝑝 to denote
the abstract VFM function which given a virtual privileged
state returns the host privileged state. Often, the implemen-
tation of 𝑐𝑓𝑔 is scattered across the code base: a change in one
virtual register might trigger a change to the corresponding
physical register.
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Figure 8. The faithful execution criteria. A VFM must con-
figure the host machine such that direct execution produces
observable results similar to a reference machine.

Definition 2 (Faithful execution).

∃(𝑐ℎ, 𝑐𝑟 ) ∈ 𝐶 ×𝐶, ∀(𝑝𝑣, 𝑢, 𝑖) ∈ 𝑆𝑝 × 𝑆𝑢 × 𝐼 ,

ℎ𝑤 |𝑢 (𝑐ℎ, 𝑐𝑓𝑔(𝑝𝑣), 𝑢, 𝑖) ≃ ℎ𝑤 |𝑢 (𝑐𝑟 , 𝑝𝑣, 𝑢, 𝑖)

In plain English, the host hardware must be programmed
to execute as if the firmware was running natively on a
reference machine with a different configuration. The verifi-
cation of the host machine programming therefore requires
instantiating two hardware interfaces, one with the refer-
ence platform configuration and privileged state, and another
with the host platform configuration and the privileged state
derived from the firmware virtual state by the hypervisor.
Figure 8 illustrates the criteria. Although it might be im-
practical to verify faithful execution for all instructions, the
criteria is still useful for detecting specific hardware miscon-
figuration. For instance, proving faithful execution of loads
and stores implies that memory protection has been properly
configured.

6.4 Model Checking

The faithful execution and faithful emulation criteria serve
as a specification for critical virtualization components of
VFMs. We use the Kani Rust model checker [94] to verify
the main Miralis’s subsystems through exhaustive symbolic
execution of theRust code. For this purpose, we first translate
the officialRISC-V Sailmodel [4] toRust. As the Sail compiler
can output C code but not Rust yet, we wrote a Rust back-
end for the Sail compiler in 2K lines of OCaml as a one-
time effort. We paid special attention to preserving the Sail
semantic during translation. In particular, we encode Sail’s
bitvectors into custom Rust structs that preserve bitwise
operation semantics. Using this Rust model, we write the
faithfulness criteria as simple unit tests whose inputs are
symbolic values. In total, the translated Rust model amount
to 6.9k lines of code, on top of which we manually wrote
1.1k lines of proofs in the form of standard Rust tests and
helper functions. The verification covers a total of 2.7k lines
of code in Miralis, or 43% of the total code base.
Faithful Emulation: We verify the implementation of

the instruction emulator, traps to vM-mode, and check for
virtual interrupts (see green boxes in Figure 4). Instruction

Table 2. Model checking time of the emulation pipeline
Verification task Time Verification task Time

mret instruction 68s wfi instruction 28s
sret instruction 56s instruction decoder 45s
CSR read 99s virtual interrupt 94s
CSR write 9min end-to-end emulation 118min

emulation is the biggest attack surface exposed to the virtual
firmware, 2.1k lines of code, or 34% of the total Miralis code
base, while virtual interrupt losses can cause system stalls
or instabilities. The verification follows Figure 7: we instan-
tiate a symbolic initial state (i.e., all 84 CSRs and general
purpose registers) and a symbolic privileged instruction, per-
form exhaustive symbolic execution through both Miralis’s
emulator and the Sail model, and check for equality of all of
the resulting virtual registers. As end-to-end verification of
instruction emulation is time consuming (close to 2 hours)
we found that it is useful to verify the emulation of individ-
ual instructions during development. We report verification
time for different parts of the instruction emulator in Table 2.
Faithful Execution:We verify the faithful execution of

loads and stores, i.e., that memory protection is properly
configured. As described in §4.2, Miralis multiplexes the
PMP registers to protect itself, enforce security policy, and
allow the virtual firmware to use the remaining entries. Thus,
the configuration of physical PMPs is crucial for the security
of both Miralis and the firmware. We follow the procedures
illustrated in Figure 8: We initialize a set of symbolic virtual
PMP registers, compute the corresponding set of physical
registers using the appropriate Miralis function, and use
the pmpCheck function from the reference RISC-V model to
check for the success or failure of a load/store instruction
at a symbolic address. If the symbolic address corresponds
to Miralis memory or a virtual device then we expect the
load or store to fail with the physical PMPs, for all other
addresses we verify that the load or store either succeed or
fail for both the physical and virtual PMPs.

6.5 Bugs Found During Development

In total we found and corrected 21 bugs in Miralis’s im-
plementation, including a virtual PC overflow, out of bound
accesses (which cause crashes but not UB in Rust), flawed
mret emulation, wrong interrupt priorities, and a long tail
of edge cases in CSRs bit patterns. Most importantly, we
found three bugs in PMP virtualization: one of which al-
lowed the firmware the overwrite the PMP configuration
beyond the allowed number of virtual PMPs, another accept-
ing the reserved combination of W=1 and R=0 permissions,
and an invalid legalization bitmask due to a misplaced paren-
thesis. Overall the use of the official executable specification
has been essential to the implementation and robustness of
Miralis, and lightweight formal method tools such as the
Kani model checker has made it practical for doing so.
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Table 3. Characteristics of our evaluation platforms
VisionFive 2 HiFive Premier P550

Number of cores 4 4
Frequency 1.5GHz 1.8GHz
RAM 4GB 16GB
Linux kernel version 5.15 6.6

7 Security Analysis

Before discussing the evaluation of Miralis, we propose
to review the security guarantees of our implementation.
Miralis enforces its own integrity and confidentiality by
protecting itself from accesses by the firmware and the OS.
This includes direct loads and stores, as well as DMA from
devices. DMA protection relies on IOPMP or an equivalent
mechanism. If no such mechanism is available, as is the case
on the platforms we evaluate, Miralis revokes firmware
accesses to DMA-capable devices, but is vulnerable to device
accesses from the OS. The core virtualization logic has been
verified for functional correctness, which covers 43% of the
code base. The rest of the code, including assembly, device
drivers, and fast-path offloading, is part of the TCB.
Miralis is intended to be used with at least one policy

module, which is responsible for providing the desired iso-
lation guarantees for the OS, enclaves, or confidential VMs.
Policy modules play a similar role to traditional security
monitors, such as Keystone [62] or Komodo [49]. In com-
parison, Miralis provides the necessary infrastructure to
extend the security policies to the vendor firmware, which
would otherwise need to be trusted. It is the responsibility
of the policy authors to verify policy modules. We did not
verify the sandbox and Keystone policies, but ported verified
code for the ACE policy [79].

8 Evaluation

In this section we seek to validate the hypothesis underly-
ing the design of VFMs. Specifically, we seek to answer the
following questions:

Q1 Can a VFM virtualize unmodified vendor firmware?
Q2 Does a VFM induce overhead on OS execution?
Q3 Is fast path offloading necessary on the current gener-

ation of RISC-V CPUs?
Q4 Can a VFM be used to implement custom isolation

policies, such as enclaves and confidential VMs?

For this purpose, we evaluate Miralis on two platforms
from different vendors. We demonstrate the virtualization
of two unmodified firmware, evaluate the overhead of Mi-
ralis through a comprehensive suite of micro and macro-
benchmarks with and without fast path offloading, and port
two existing security monitors as Miralis policy modules.

Reset Vector U-Boot SPL VFM

OpenSBI U-Boot Linux

S-modevM-mode

M-mode

Transitive Resident

Trusted

Untrusted

Figure 9.Modified boot-flow with the Miralis VFM.

8.1 Experiment Setup

For our evaluation, we port Miralis to two platforms from
different vendors: StarFive’s VisionFive 2 and SiFive’s HiFive
Premier P550. The VisionFive 2 is powered by U74 in-order
RISC-V cores, while the Premier P550 uses the high perfor-
mance P550 out-of-order super-scalar cores with H-mode
support. Table 3 summarizes the characteristics of both plat-
forms. Unless stated otherwise Miralis is configured with
the firmware sandbox policy (§5.2), results are averaged over
5 runs, and number of traps are reported per core. “Miralis
no-offload” designates the configuration without fast path
offloading. When network is involved we use a remote client
with 8 cores at 3.5 GHz on the local Ethernet network.

8.2 Virtualizing Unmodified Firmware

To answer Q1 we evaluate Miralis’s ability to virtualize
unmodified vendor firmware on the VisionFive 2 and Pre-
mier P550 boards. Both vendors rely on a two stageM-mode
firmware. The first stage is responsible for initializing DRAM
and loading the second stage in memory, but is no longer
used afterward. The second stage is the firmware used at
runtime, and stays resident in memory until system reset.
Both second-stage firmware are open-source, and account
for 31.8k and 24.7k lines of code on the VisionFive 2 and Pre-
mier P550, respectively. We insert Miralis in-between the
two firmware stages, ensuring that Miralis gets full control
over the machine and that the second stage firmware never
executes in M-mode. Figure 9 illustrates the boot flow on
both platforms. The Premier P550 further exposes four non-
standard but documented CSRs for controlling speculation
and error reporting, Miralis explicitly allows writes to these
CSRs for that platform. With those configurations the user
sees no difference in machine behavior besides additional
logs during system boot.
As both vendor firmware are based on OpenSBI, we fur-

ther exercise Miralis’s virtualization capabilities with two
independent open-source firmware: RustSBI and Zephyr.
RustSBI [5] is an alternative toOpenSBI, written from scratch
in Rust. Zephyr [6] is a Real Time OS (RTOS) designed for
micro-controllers, it consists of an M-mode kernel and user
applications. Both RustSBI and Zephyr pass their respec-
tive test suite while being virtualized by Miralis, and are
in fact part of the test pipeline. Finally, to demonstrate that
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Table 4. Overhead of Miralis operations in cycles
Instruction emulation World switch

VisionFive 2 483 2704
Premier P550 271 4098

the firmware does not need to be open-source, we port Mi-
ralis to a third platform, the Star64, for which the vendor
do not provide firmware sources. Upon receiving the board,
we extracted the 164kB firmware image from the flash and
succesfully ran it virtualized with Miralis.
We conclude that the answer to Q1 is yes: Miralis can

virtualize unmodified vendor firmware.

8.3 Impact on OS performance

We then proceed to evaluate the impact of a VFM on OS
operations to answer Q2 and Q3.

8.3.1 Cost of Miralis Operations. A VFM introduces
overhead when the OS traps to the virtualized firmware. The
incurred cost falls in two categories: firmware instruction
emulation and world switches. Table 4 reports both costs
measured with a minimal firmware and kernel. Specifically,
we measure the cost of emulating the “csrw mscratch, x0”
privileged instruction, including the overhead of trapping to
M-mode and jumping back to U-mode (i.e., vM-mode). The
cost of a world switch is reported for a full round trip, i.e.,
sequence OS → VFM → firmware → VFM → OS, where
the firmware returns directly to the OS. On average, we
observe around 10 firmware instruction emulations from the
virtual firmware to handle a trap from the OS. This results in
a world switch round trip cost of about 7 000 cycles or 5𝜇𝑠 .
On platforms that heavily rely on the firmware for soft-

ware emulation of unimplemented hardware features the
overhead of firmware virtualization might become prohib-
itive. To keep the overhead low, we implement a fast path
for the five most common operations (§3.4) directly in Mi-
ralis, bypassing the virtual firmware for those operations.
We compare the implementation in Miralis and the vendor
firmware (based on OpenSBI) of two such operations, reads
to the time CSR and IPIs, by instrumenting the Linux kernel
to execute 100k of each operation in a tight loop. Table 5
reports the results for the VisionFive 2. We found Miralis’s
implementation to be slightly faster, a difference that might
be caused by OpenSBI’s heavy use of indirect function calls
that prevent cross-functions inlining and compiler optimi-
sations, although this is an implementation detail rather
than a fundamental result. In addition, we report the cost
of the two operations with fast path disabled as “Miralis
no-offload”. Without fast path, the operations trap to the vir-
tualized firmware, which in turns require emulation for each
privileged instruction and adds up to an order of magnitude
of overhead.

Table 5. Cost of timer read and IPI
read time IPI

Native (OpenSBI) 288 𝑛𝑠 3.96 𝜇𝑠
Miralis 208 𝑛𝑠 3.65 𝜇𝑠
Miralis no-offload 7.26 𝜇𝑠 39.8 𝜇𝑠
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Figure 11. IOzone throughputs on the VisionFive 2

8.3.2 Microbenchmarks. We evaluate the impact of Mi-
ralis on OS CPU and I/O microbenchmarks. We report the
results for the VisionFive 2 but observe similar patterns for
the Premier P550.
CPU:We use CoreMark-Pro [46] running on all 4 cores

as a CPU-bound microbenchmark. We report the relative
performance compared to running without Miralis (Native)
in Figure 10.
Disk I/O: We use IOzone [56] with O_DIRECT to evalu-

ate the impact on disk I/O. We report the read and write
throughput for a 128K record size on the VisionFive 2 in Fig-
ure 11. The absolute performance depends on the underlying
hardware: we measure close to 10x the throughput on the
Premier P550.

Network latency: Finally we evaluate the impact of Mi-
ralis on the latency of Memcached usingMemtier [1].Memtier
is a closed-loop latency benchmark, we open 32 concurrent
connections with 100k requests each. We report the latency
distribution in Figure 12.
On all three microbenchmark suites, Miralis causes no

overhead compared to the baseline (“Native”). Indeed, we
measure 0.479 world switches per second on average across
all microbenchmarks, a negligible amount. In fact we observe
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Figure 12.Memcached latency distribution

that Miralis performs slightly better on IOzone write and
on Memcached under the 95 percentile, 263 vs 279 𝑛𝑠 at
the median for instance. The difference is due to Miralis’s
fast path implementation being slightly more efficient than
the vendor firmware’s. However, with the fast path disabled
(“Miralis no-offload”), we observe an overhead that scales
with the frequency of traps toM-mode. The CPU benchmark
causes the least traps toM-mode, 11k/s, while Memcached
causes the most at 388k trap/s. As a result, we observe on
average 1.9% overhead on CoreMark-Pro, 10.6% on IOzone,
and 2× the latency on Memcached.
We observe similar results on boot time, measured from

board power-on to login prompt display on the screen, during
which the firmware plays a major role. We measure 48.0s
boot time with Miralis against 47.5s for the baseline (1%
overhead), whereas removing the offload increases boot time
to 61.3s, i.e., 29% overhead.

8.3.3 Application benchmarks. We then proceed to eval-
uate the impact of Miralis in realistic application scenar-
ios. We consider four workloads: two in-memory key-value
stores, Redis and Memcached, an SQL database (MySQL),
and GCC. Figure 13 reports the relative performance (higher
is better) for both the VisionFive 2 and the Premier P550.

Key-value stores: We evaluate the popular Redis (v7.0)
andMemcached (v1.6) in-memory key-value stores on YCSB
workload A [40] with one million operations each. Redis ex-
ecutes as a single threaded application, whileMemcached
uses the 4 available cores on both platforms.
SQL workload: We evaluate MySQL (v8.0) as a mixed

CPU, network, and disk application. We use the OLTP read-
/write workload from Sysbench [60] with 128 concurrent
clients over 5 minutes.
Compilation: Finally we measure the time to compile

Redis with GCC v12.2.
In line with the microbenchmarks evaluation, we observe

very few world switches, 0.486/s on average on the Vision-
Five 2 and none at all on the Premier P550, and therefore
no overhead due to Miralis. As network workloads tend
to generate more traps to M-mode, up to 272k trap/s for
Redis and 389k trap/s for Memcached, Miralis performs
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Figure 13. Relative performance comparison for various
application workloads.

better on those with up to 7.6 and 1.2% improvement on
the VisionFive 2 and Premier P550, respectively. Once again,
this is due to the Miralis’s fast path slightly faster imple-
mentation, although the vendor firmware could be tuned to
achieve comparable performance. Disabling fast path offload-
ing drastically increases the overhead: up to 259% on Redis
for the Premier P550, although compute heavy workload is
less dramatically affected.

Overall, we conclude that a VFM introduces no overhead
on OS execution due to the low frequency of world switches
(Q2). However, considering the overhead incurred when dis-
abling fast path offloading we conclude that the fast path for
the most common operations must be implemented within
the VFM (Q3). We expect this to change with the next gen-
eration of RISC-V CPUs. Indeed, implementing support for
reading the time CSR plus the Sstc extension would remove
96.5% of all world switches on our application benchmarks.

8.4 Support for Isolation Policies

Finally, to answer Q4 we test the suitability of Miralis for
enforcing custom isolation policies by deploying the three
policies described in §5.

All benchmarks presented so far use the firmware sandbox
policy (§5.2), and therefore prevent the firmware from ac-
cessing OS memory, devices, and registers with no overhead.
In addition, we demonstrate the Keystone policy (§5.3)

by reproducing the RV8 benchmark from the Keystone pa-
per [62] using a re-implementation of the Keystone security
monitor as a Miralis policy module. We nonetheless re-use
the rest of the Keystone infrastructure without modification,
including the kernel driver, enclave runtime, applications,
and loader. Figure 14 reports the results on the VisionFive
2, with an average overhead of 1% when running inside an
enclave, in line with the results reported by Keystone.
Lastly, with the ACE policy (§5.4), we reproduce the con-

figuration demonstrated by the ACE authors. Specifically,
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Figure 14. Relative performance of Keystone enclaves im-
plemented by Miralis on RV8.

we run a confidential Linux VM with 1GB of RAM, a vir-
tio NIC and a drive. We run the VM through the ACE API,
where we further strengthen confidentiality by excluding the
firmware from the TCB. As ACE does not support available
hardware platforms at the time of writing, we reproduce the
ACE example on QEMU and are therefore unable to provide
a meaningful performance comparison.
Overall, we conclude that VFMs are a suitable host for

TEE security monitors (Q4), as they do not require vendor
firmware modification and efficiently de-privilege untrusted
firmware while removing it from the TCB. We further built
Miralis around a modular architecture, making it simple to
experiment with new isolation policies.

9 Discussion & Related Work

Privilege Separation: Dorami [61] is the first system to
propose a practical privilege separation between the security
monitor and the firmware. Dorami sandboxes the firmware
directly within M-mode by leveraging ePMP (Smepmp [96]
extension) through a combination of firmware modifications
and binary scanning. Dorami is closely related to systems
such as Nested Kernel [43] for kernel-level privilege sepa-
ration. In comparison, Miralis requires no firmware modi-
fication and runs on commercially available hardware. Mi-
ralis instead is more closely related to micro-kernels [58, 64,
69] and privilege-separation hypervisors [65, 66], with the
firmware virtualization subsystem inspired from classical
VMMs [29, 31, 32].

Security Monitors: The growing popularity of TEEs has
led to booming research in building security monitors [25,
48, 49, 62, 68, 79]. In particular, the idea of leveraging virtu-
alization to deprivilege an untrusted kernel has been widely
explored [23, 34, 37, 52, 53, 73, 99]. Miralis provides the
mechanisms needed to push this idea one step further, down
to the firmware, and can serve as the basis for the next
generation of security monitors. Beyond security consider-
ations, the biggest benefit of Miralis is maybe the ease of
maintenance and portability. Indeed, maintaining 𝑁 security
monitors across𝑀 platforms currently requires O(𝑁 ×𝑀)
engineering effort, whereas developing security monitors as
Miralis policy modules reduces that effort to O(𝑁 +𝑀).

Automated System Verification: In contrast with in-
teractive theorem provers [39, 78], there has been a lot of
efforts in automating system verification [35, 80, 90, 98]. The
methodology to automatically verify critical components of
Miralis was inspired by the finding of past work that verifi-
cation of systemswith finite interfaces [76, 77] is often amend-
able to fully automated verification by SMT solvers [45, 92].
Indeed, a VFM exposes an ISA interface which (at least on
RISC platforms) is finite. Our approach leverages the speci-
ficities of VFMs to go even one step further by expressing the
specification of a VFM as a function of an already existing
ISA specification, lifting the burden of writing both the proof
and the specification. In particular, this guarantees that the
VFM specification stays up-to-date as the ISA evolves.

Non-Virtualizable ISAs: As discussed in §3.2, Arm’s EL3
is not virtualizable due to the ISA design. This does not
preclude the sandboxing of firmware with an Arm VFM,
however the virtual EL3 mode would behave slightly differ-
ently, potentially affecting the execution of the virtualized
firmware. We envision two potential solutions to this prob-
lem: (1) modifying the vendor firmware to call into the VFM
for emulation of instructions that violate the virtualization
requirements [81], i.e., paravirtualization [26]; or (2) add a
configuration register in the next iteration of the Arm archi-
tecture to enable trapping on those instructions.
Running firmware in S-mode: Although we only dis-

cussed running vendor firmware in U-mode, running vendor
firmware in S-mode is possible under some conditions. Per
the Popek & Goldberg requirements [81] all sensitive in-
structions must trap, yet a firmware in S-mode gets access
to many more instructions. On RISC-V it is possible to force
all sensitive instructions to trap, such as accesses to the page
table pointer or sret, and thus possible to run a firmware
in S-mode. That is because RISC-V has been designed so
that HS-mode can be emulated in software. Yet there are
few benefits for doing so: it complicates the VFM implemen-
tation with limited performance benefits as most S-mode
instructions should be intercepted.

10 Conclusion

In this paper, we describe how to safely and efficiently depriv-
ilege and isolate unmodified vendor firmware. We introduce
the concept of virtual firmware monitor (VFM), a new class
of system software that virtualizes the firmware privilege
mode. We describe Miralis, and demonstrate that VFMs can
be deployed on commercially available RISC-V platforms
and introduce no performance overhead. We explain how to
verify critical VFM components by automating both verifica-
tion and specification generation. Finally, we demonstrate
that existing security monitors can be ported to Miralis,
removing the vendor firmware from the TCB.
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